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Motivation—Gravitational Waves
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Motivation—Grand Unified Theory

GUT

Unification of symmetries GGUT

Unification of gauge couplings Unification of matters

GSM
broken Cosmic Phase Transition topological defects

Proton DecayGUT Scale

Unwanted topological defects: monopoles and domain walls. The both defects must be diluted through inflation.

Inflation

G1 ⊂ GSM × U(1)

Standard Model

Diluting monopoles and domain walls

Case I: GUT breaking before inflation

Cosmic strings from  breaking 
GWs from cosmic string:

U(1)

Inflation

G1 ⊂ GSM × U(1)

Standard Model

GUT

Case II: GUT breaking during inflation

GUT Phase Transition 
GWs from GUT PT

GUT breaking

Super-high scale PT 
GWs from SHSPT

• Seesaw Mechanism 
• Matter-antimatter asymmetry

• Test Seesaw Mechanism, 1908.03227 
• Test GUT, 1912.03695, 2005.13549

Are GWs from GUT PT 
during inflation observable 

today and used to test GUT?
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Motivation—Phase Transition during Inflation

MD DΛInflation RD

inside-horizon evolution for  f ≫ 10−14 Hz

Reheating (Rh)

evolution I

PT at inflation PT at RD

fpeak ∝ TRhe−N⋆ fpeak ∝ T⋆

Phase Transition at a⋆ fpeak ∼
a⋆

a0
H⋆

dρin
GW

d log k
∝

1
a4(τ)

h̃Inf
ij (τ, k) h̃in

ij (τ, k) ≃ h̃RD
ij (τ, k) Inside Horizon: λ ≪ 1/ℋ

Haipeng An, et al., 2009.12381, 2201.05171

Phase transition during inflation: ΛPT ≳ ΛInf

• Frequency is redshifted by inflation  
• GWs spectrum has special features

Super-High Scale Phase Transition (SHSPT), Λ > 109 GeV

• SHSPT during RD:  , Unobservable today 

• SHSPT during inflation: GWs is possibly observable

fpeak > 104 Hz

Match at reheating:  h̃Inf
ij (τ, k)

Rh
= h̃RD

ij (τ, k)
Rh

New Physics: GUT, Intermediate Symmetries of GUT, Seesaw Model, 
New Gauge Symmetries, Flavor Symmetries, Extra Dimensions, SUSY



h1(τ, k) =
−a2

Rh

a(τ)
yϵ

a⋆H⋆
× { 1 − ϵ

y3
cos[kτ + y(1−2ϵ)] − ( 1 + yϵ

y4 ) sin[kτ + y(1−2ϵ)]}

Inflated GWs from instant sources
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GWs’ Evolution in inflation h̃Inf
ij (τ, k) = 16πGNσ̃ij(k) ×

a⋆

k
a⋆H⋆

k ( a⋆

a(τ)
− 1) cos[k(τ − τ⋆)] + ( a2

⋆H2
⋆

k2
+

a⋆

a(τ) ) sin[k(τ − τ⋆)]

t⋆ t⋆ < t < tRh tRh Inside Horizon a(t) λ ≪ 1/H
Outside Horizon a(t) λ ≫ 1/HProduction Propagation and Redshift Inflation Finished

GWs from instant sources during inflation evolving in RD, MD, DΛ
h̃ij(τ, k) = 16πGNσ̃ij(k) × [h0(τ, k) + h1(τ, k)]
h0(τ, k) =

−a2
Rh

a(τ)
1

a⋆H⋆
×

sin[kτ − yϵ]
y3

× {cos[y(1−ϵ)] −
sin[y(1−ϵ)]

y }

H⋆ = HInf ≃ constant

h̃Inf
ij (τ, k)

Rh
= h̃RD

ij (τ, k)
Rh

∂th̃Inf
ij (τ, k)

Rh
= ∂th̃RD

ij (τ, k)
Rh

Matching Conditions
 is Haipeng’s resulth0

 dominates GWs in UV and IR,  dominates GWs in far UV.h0 h1
y =

k
a⋆H⋆

= e−N⋆ , ϵ =
a⋆

aRh
≤ 1

Conventions

, Far UVk
aRhH⋆

≫ 1

, UVk
aRh H⋆

≪ 1 ≪
k

a⋆ H⋆

, IRk
a⋆ H⋆

≪ 1



dρGW

d log k
=

dρflat
GW

d log k
×

a4
Rh

a4(t)
× 𝒮(t, k)
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Inflated GWs from instant sources
Inflated GWs Spectrum — GWs produced during inflation

deformation function redshift from inflation
h2ΩGW( f ) = h2 Ω̃ GW( f̃ )

f̃=f aRh
a⋆

× S( f )

dρflat
GW

d log k
=

2GN

π
k3

V
σ̃ij(k)

2

h2 Ω̃ GW( f̃ ) =
h2

ρc

dρflat
GW

d log k
×

a4
Rh

a4
0

S( f ) = 𝒮(t0,2πa0 f ) = S0( f ) + S1( f ) S0( f ) = { cos[y(1 − ϵ)]
y2

−
sin[y(1 − ϵ)]

y3 }
2

S1( f ) = yϵ × {[ 1
y2

+ 2ϵ − 1] sin[2y(1 − ϵ)]
y4

− [ 2 − ϵ
y2

+ ϵ] cos[2y(1 − ϵ)]
y3

+
ϵ3

y ( 1
y2

+ 1)}

Uninflated GWs for   — in-horizon evolutionf ≫ 10−14 Hz

GWs in flat spacetime
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Otherwise, 
  is important and  is correct.S1 S( f )

 from  is Haipeng’s resultS0 h0

correlation
instant source

 is correction in our work 
for adapting 
S1

ϵ ≳ e−10

When ,  dominates GWs in 
IR ( ) and UV ( ).

ϵ ≪ e−10 S0
y ≪ 1 y ≫ 1 ∧ yϵ ≪ 1

decreasing by a4

Specific feature —  Oscillates!S( f )

Hence, Our result is applicable for any .N⋆
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Inflated GWs from short-time sources

S( f ) =
1
Δt ∫

t̄+Δt/2

t̄−Δt/2
dt⋆ S( f ) =

1
Δy ∫

ȳ+Δy/2

ȳ−Δy/2
dy S( f )

ȳ= 2πa0 f
a⋆H⋆

Δy =
a⋆Δτ

1/H⋆
ȳ conformal duration of sourcesΔτ

 is complicated but analyticS̄
h2ΩGW( f ) = h2 Ω̃ GW( f̃ ) × S( f )

The duration  damps oscillation but don’t affect envelope.Δτ

FUV:  ,  yϵ ≫ 1 SFUV( f ) ≃ ϵ4 = a4
⋆/a4

Rhfor more realistic, Short-Time Sources at t⋆
UV:  , yϵ ≪ 1 ≪ y SUV( f ) ∼ 1/ȳ4

SUV( f ) ≃
(1 − ϵ) + cos[2ȳ(1 − ϵ)]sin[Δy(1 − ϵ)]/Δy

2ȳ4

IR:  ,  y ≪ 1 SIR( f ) ≃ 1/9
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Inflated GWs from Phase Transition during inflation

GWs from Phase Transition in flat spacetime

plasma: sound waves, MHD turbulence 
phase transition field: bubble collisions;

Plasma is unnecessary during inflation, 
so sound waves and MHD turbulence are negligible, 
and we only consider bubble collisions during inflation.

I. Envelope Approximation
The energy-momentum is mainly 
contained in envelope of bubbles 
and vanishes in intersection.

III. Simulation

II. Broken Power Law

h2ΩGW( f ) = h2 Ω̃ GW( f̃ ) × S( f )

PRL 69 (1992) 2026-2029 
PRD 47 (1993) 4372-4391 
PRD 49 (1994) 2837-2851

ΩGW⋆( f⋆) = Ωpeak
GW⋆

(a + b)( f⋆/f peak
⋆ )a

a( f⋆/f peak
⋆ )a+b + b

After having ,  we will study the uninflated GWs spectrum.S( f )

f̃ peak = 37.8 MHz ( β
H⋆ ) ( T⋆

1015 GeV ) ( g⋆

100 )
1/6

h2 Ω̃ GW( f̃ ) = 1.27 × 10−6( H⋆

β )
2

( ρPT

ρtot )
2

( 100
g⋆ )

1/3
(a + b)( f̃/ f̃ peak)a

a( f̃/ f̃ peak)a+b + b

Ωpeak
GW⋆ =

0.11v3
w

0.42 + v2
w

× κ2( ρPT

ρtot
)2 × ( H⋆

β )2

f peak
⋆ =

0.62 β
1.8 − 0.1vw + v2

w κ(α) =
0.715α + 0.181 α

1 + 0.715α

nβ =
β
H

∈ (10,104)

Uninfalted GWs Spectrum from Phase Transition
phase transition parameters: duration of phase transition:  

vacuum energy density: 
1/β

ρPT = ρF − ρT

vw = 1, α → ∞, κ → 1
IV. phase transition during inflation — few radiation

α = ρPT/ρrad

JCAP 09 (2008) 022

a = 2.8, b = 1 bubble wall velocity:  
effective factor about fluid: 

vw
κ

strong phase transition
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Inflated GWs from GUT Phase Transition

h2ΩGW( f ) = h2 Ω̃ GW( feN⋆) × S( f )
Inflated Uninflated

redshift
deformation

TRh = 1015 GeV

ρPT/ρtot = 0.1

β/H⋆ = 5

Parameters of inflated GWs from PT

• inflation parameters: 
  reheating temperature ,  
  e-folds number of sources , 

• phase transition parameters: 
  PT velocity ,  
  PT energy density 

TRh
N⋆

β/H⋆
ρPT/ρtot

• Uninflated frequency from GUT PT is beyond observation. 
• Inflated GWs of GUT PT are observable and have oscillations.
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Inflated GWs from GUT Phase Transition
Inflated GWs from GUT Phase Transition: TRh = 1015 GeV

β
H⋆

= 5

 Large  only affects frequency,  only affects amplitude, and  affects shape and amplitude.N⋆ ρPT/ρtot β/H⋆

ρPT

ρtot
= 0.1

Inflated GWs from Phase Transition of New Physics below GUT Scale

• Intermediate Symmetries of GUT 
• Seesaw Model/U(1)B−L

 only affects GWs’ frequency and 
doesn’t change shape and amplitude of spectrum.
TRh

Super-High Scale Phase Transition, Λ ∼ TRh > 109 GeV
• New Gauge Symmetries 
• Flavor Symmetries

Our method and results are applicable for these phase transitions.
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Inflated GWs from Phase Transition 

Monopoles Problem Limit

β/H⋆ ≥ 5

Inflation  Parameters

Ωmono

10−5
∼ ( TRh

1015 GeV )
4

e−3(N⋆−15) ≲ 1

Scanning peak frequency of inflated GW from PT in parameters space,  and ,  and TRh N⋆ β/H⋆ ρPT/ρtot
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Excluded by monopole problem

GW wavelength out-horizon today

Phase Transition Parameters

short-time sources 

fpeak ∼ H⋆a⋆/a0n⋆ ∼ L−3
mono ∼ H−3

⋆ , Mmono ∼ 10TRh short-time sources 

•  and  decide the peak frequency, and  and  don’t affect. 
• Inflated GWs of SHSPT are observable after solving monopoles problem.

TRh N⋆ β/H⋆ ρPT/ρtot
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Inflated GWs from Phase Transition 

h2ΩGW( f ) ∝ f aS0( f ) f peak ≃ 62.7 MHz × ( g⋆

100 )1/6( T⋆

1015 GeV ) × e−N⋆

h2Ωpeak
GW ≃ 6.27 × 10−7 × (H⋆

β )2+a( ρPT

ρtot
)2( 100

g⋆
)1/3

Phase Transition Parameters
Scanning peak spectrum of inflated GWs from PT in parameters space,  and ,  and TRh N⋆ β/H⋆ ρPT/ρtot

Inflation Parameters

dotted lines: numerical solutions 
solid lines: analytic solutions 

• Phase transition parameters decide peak spectrum. 
• GWs spectrum in some parameters space are observable.



13

Results
• After solving monopole problem, GWs from GUT phase transition during inflation, 
if it is first-order, can be redshifted and deformed to oscillate, and thus might be 
observable today and in foreseeable future. 

• The general correlation between inflated GWs and uninflated GWs is established for 
short-time sources, which is applicable for any e-folds number of sources. 

• There are three region — IR, UV and far UV for inflated GWs, where IR and UV usually 
aren’t extremely depressed, and FUV is depressed by . 

• The inflated GWs from phase transition have 

 

  where some parameters’ regions can be tested today and in future as shown on the above. 

• For inflated GWs from short phase transition, phase transition parameters decide peak 
spectrum and inflation parameters decide peak frequency.

a4
⋆/a4

Rh

f peak ≃ 62.7 MHz × ( g⋆

100 )
1/6

( T⋆

1015 GeV ) × e−N⋆ , h2Ωpeak
GW ≃ 6.27 × 10−7 × ( H⋆

β )
2+a

( ρPT

ρtot )
2

( 100
g⋆ )

1/3
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Production and Propagation of GWs
ds2 = a2(τ)[dτ2 − (δij + hij(τ, x))dxidxj]Conformal FLRW Metric

E.O.M of CGWs h̃′￼′￼ij(τ, k) + 2ℋh̃′￼ij(τ, k) + k2h̃ij(τ, k) = 16πGNa2(τ)σ̃ij(τ, k)  is conformal Hubble factorℋ

h̃ij(τ, k) = Cij,1 h1(τ, k) + Cij,2 h2(τ, k)

Traceless and transverse gauge

Energy density of SGWB
dρGW

d log k
=

1
64π3GN

k3

V
1

a2(t) ∫Tτ

dτ
Tτ

h̃′￼ij(τ, k)
2
, h2ΩGW( f ) =

h2

ρc

dρGW

d log k

t=t0

k=2πa0 f

Inside Horizon k2 ≫
a′￼′￼

a
, λ ≪

1
ℋ

h̃in
ij (τ, k) ≃ h̃k

ij
sin(kτ+ϕ)

a(τ)
,

dρin
GW

d log k
∝

1
a4(τ)

Outside Horizon k2 ≪
a′￼′￼

a
, λ ≫

1
ℋ

h̃out
ij (τ, k) ≃ h̃ij(τ0, k) + h̃′￼ij(τ0, k)∫

τ

τ0

dτ′￼

a2(τ′￼)

Inflation, D: Λ ℋ = − 1/τ

RD: ℋ = 1/τ

hInf(τ, k) = cos kτ + kτ sin kτ , sin kτ − kτ cos kτ

hRD(τ, k) =
cos kτ

kτ
,

sin kτ
kτ

hMD(τ, k) =
cos kτ + kτ sin kτ

(kτ)3
,

sin kτ − kτ cos kτ
(kτ)3

MD: ℋ = 2/τ

depressed by a

Constant amplitude

Waves!
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Production and Propagation of GWs

GWs in this frequency range are inside-horizon evolution during RD, MD and ΛD!

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 102 104 106Frequency [Hz]

CMB 
Polarization PTA 

Space 
Interferometers

Terrestrial 
Interferometers

Large-Surveys 
Detectors

nHZ

ℋ ∼
108 ∼ 10−16 (HZ) RD
10−16 ∼ 10−18 (HZ) MD
10−18 (HZ) ΛD

a′￼′￼

a
∼

0 (HZ) RD
10−16 ∼ 10−18 (HZ) MD
10−18 (HZ) ΛD

The GWs of all frequency is inside-horizon evolution during RD

MD DΛInflation RD

inside horizon-evolution during next periods

Reheating (Rh)Sources

h̃Inf
ij (τ, k)

h̃Inf
ij (τ, k)

Rh
= h̃RD

ij (τ, k)
Rh

∂th̃Inf
ij (τ, k)

Rh
= ∂th̃RD

ij (τ, k)
Rh

Matching Conditions of Waves

evolution I

k2 ≫
a′￼′￼

a
, λ ≪

1
ℋ

k2 ≪
a′￼′￼

a
, λ ≫

1
ℋ

h̃in
ij (τ, k) ≃ h̃RD

ij (τ, k)
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Phase Transition Potential and Monopoles Problem
Phase transition potential

VPT(ϕ, σ) = D(ϕ2 − ϕ2
0) σ2 − μ σ3 +

λ
4

σ4

 — field of PT,   — inflatonσ ϕ
n⋆ ≃ L−3

mono ∼ H−3
⋆

Ωmono

10−5
∼ ( TRh

1015 GeV )
4

e−3(N⋆−15) ≲ 1

monopoles density

SO(10) : 45 × 45 × 45 = 1 + 45 + . . .
SU(5) : 24 × 24 × 24 = 1 + 24 + . . .

I. Cubic coupling potential

possible physical origins

VPT(ϕ, σ) = D(ϕ2 − ϕ2
0) σ2 +

λ
4

σ4 +
κ
4

σ4 log
σ2

Λ2

II. Coleman-Weinberg potential

The cubic term must be gauge singlet possibly 
from adjoint representation of GUT groups.

PRD 7 (1973) 1888-1910

PRD 71 (2005) 036001, JHEP 02 (2005) 026,  JHEP 04 (2008) 029, JHEP 07 (2018) 062

III. High-dimension operator potential

VPT(ϕ, σ) = D(ϕ2 − ϕ2
0) σ2 +

λ
4

σ4 +
κ

Λ2
σ6 +

ξ
Λ4

σ8

Monopoles Problem

Ωmono =
8πGN

3H3
0

Mmono ( aRhe−N⋆

a0 )
3

n⋆

energy density proportion of monopoles today

monopoles mass Mmono ≃
ΛGUT

αGUT
∼ 10TRh

ΛGUT ∼ TRh, αGUT ∼ g2/(4π) ∼ 0.1

CMB observation Ωmono ≲ 10−5

Monopoles problem limitation


