

Effective Field Theories from GUT Scale to Nuclear Probes

Chuan-Qiang Song (HIAS) 2025.4.21 **GUTPC 2025**

Based on CQS, J.H.Yu, arxiv:2504.XXXX

- Effective field theory
- Grand unified theory
- GUT and SMEFT
- Matching between SMEFT and LEFT
- Matching between LEFT and ChPT
- Summary

Effective Field Theory

Our dream is to understand the most fundamental (UV) theory. On the other hand, we can always do computation without knowing the exact theory.

• $v \ll c \rightarrow$ no need of Special Relativity For example • $x \gg \lambda \sim h/p \rightarrow$ no need of Quantum Mechanics • $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, h_{\mu\nu} \ll 1 \rightarrow no$ need of General Relativity

Consider a QFT with a fundamental high energy scale M but interested in observables as energy E << M. Choose a cutoff $\Lambda < M$ and divide all quantum fields $\varphi = \varphi_H + \varphi_L$

Integrate-out

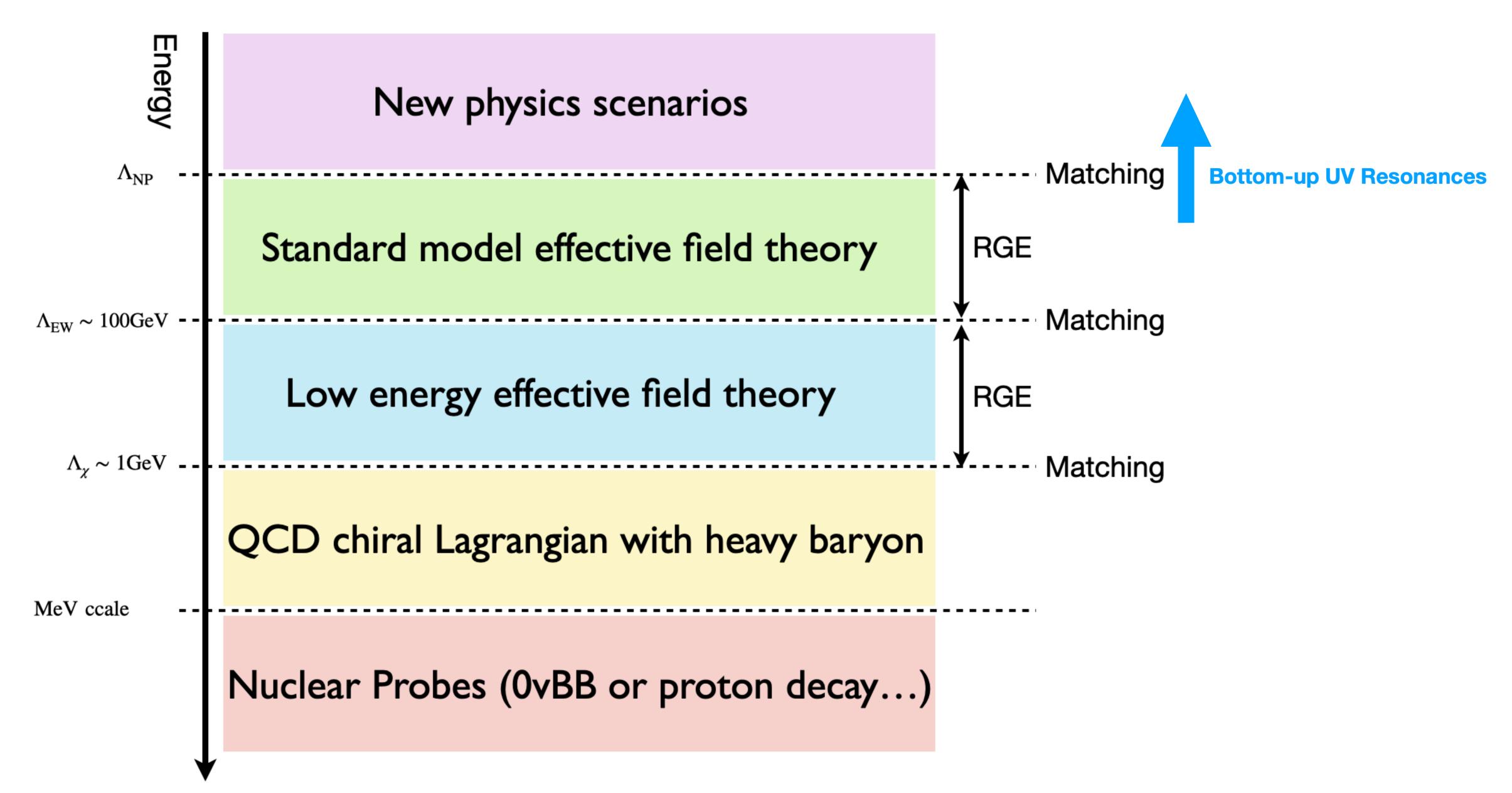
 $\int \mathcal{D} \varphi_H e^{i \int \mathcal{L}(\varphi_L, \varphi_H)} = e^{i \int \mathcal{L}_{eff}(\varphi_L)}$

 $\mathcal{L}_{eff}(\varphi_L) = \mathcal{L}$

$$(\varphi_{\boldsymbol{H}}:\omega>\Lambda \ \varphi_{\boldsymbol{L}}:\omega<\Lambda)$$

$$\mathcal{C}_{d \le 4} + \sum_{i} \frac{O_i}{\Lambda^{\dim(O_i) - 4}}$$

Effective Field Theory



Grand Unified Theory

 G_{GUT} : SU(5) or SO(10) ...

Symmetry breaking

Unify into a single force

 $\mathcal{G}_{\mathrm{SM}} = SU(3)_C \times SU(2)_L \times U(1)_Y$

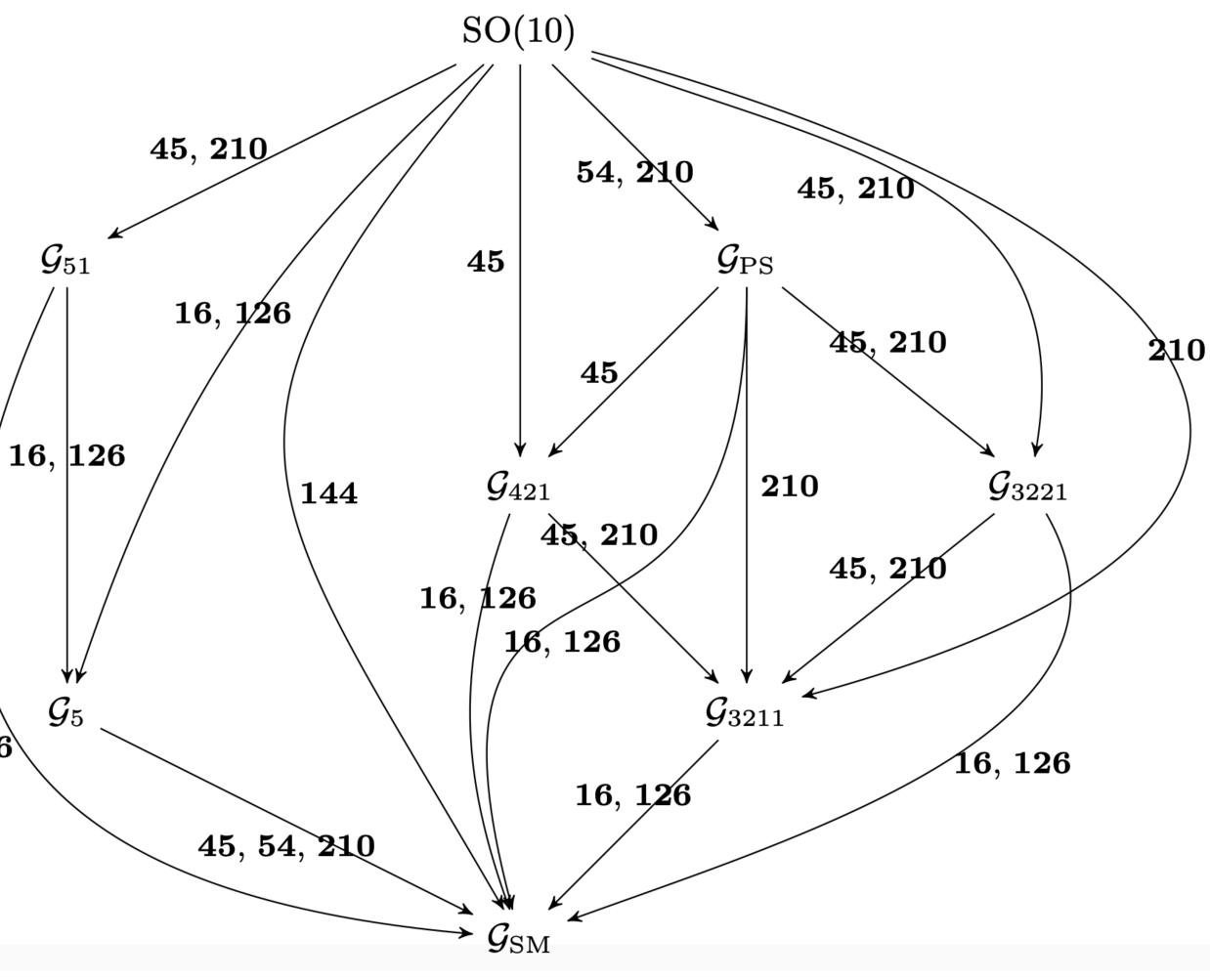
Different breaking chains

 $\begin{aligned} \mathcal{G}_{\mathrm{PS}} &= SU(4)_C \times SU(2)_L \times SU(2)_R \\ \mathcal{G}_{421} &= SU(4)_C \times SU(2)_L \times U(1)_{B-L} \\ \mathcal{G}_{3221} &= SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \\ \mathcal{G}_{3211} &= SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L} \\ \mathcal{G}_{51} &= SU(5) \times U(1)_X \end{aligned}$

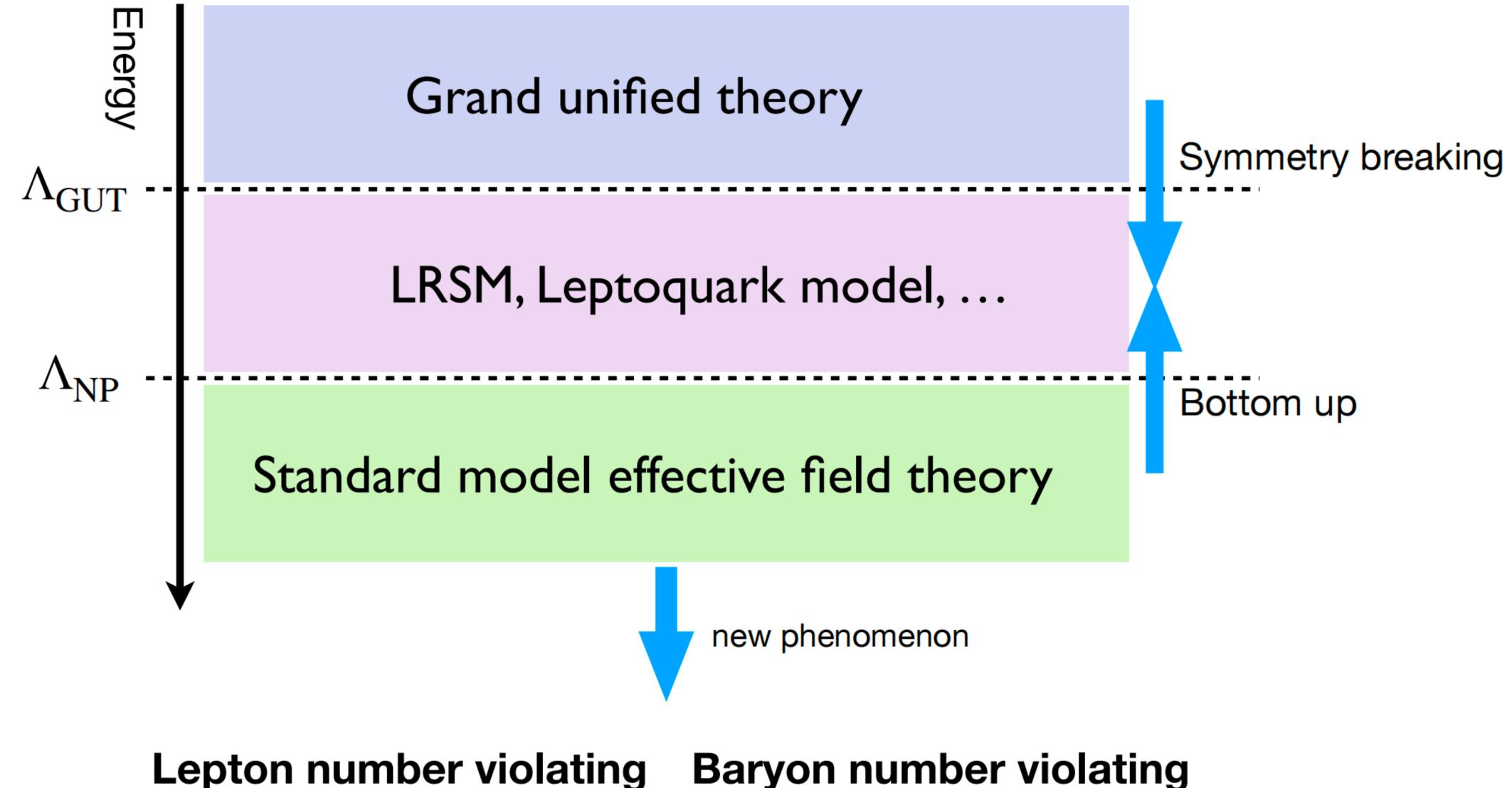
16, **126**

$$\frac{1}{10} (-X + 4Y) = B - L,$$

$$Y = B - L + T_R^3,$$



M.Pernow (2021)

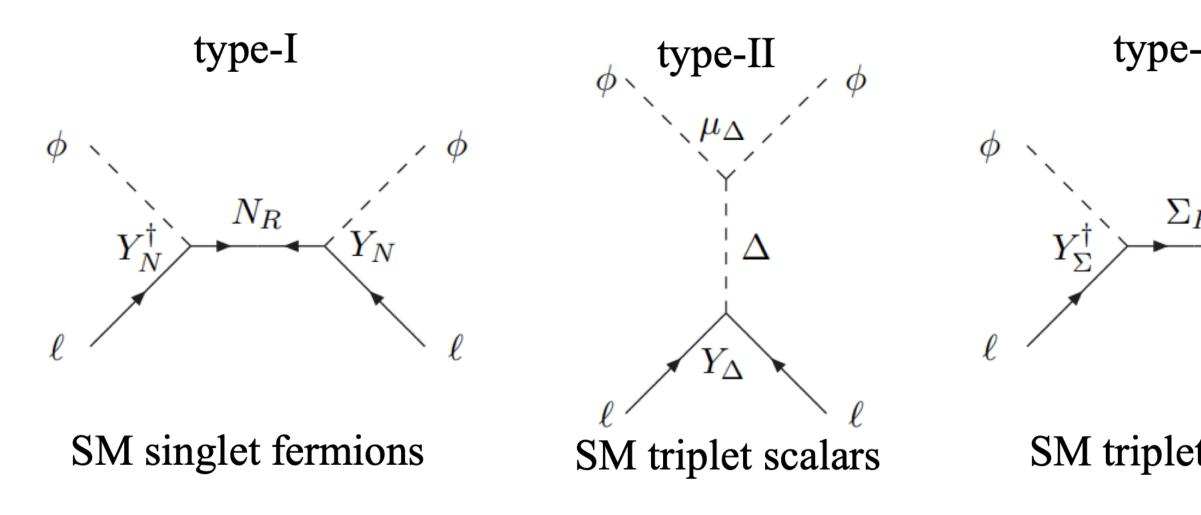


Lepton Number Violating

Dimension-5

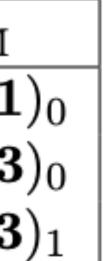
 $Q_{\nu\nu} = \varepsilon_{jk} \varepsilon_{mn} \varphi^j \varphi^m (l_p^k)^T C l_r^n$

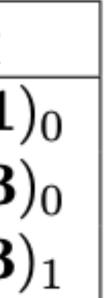
Corresponding three types seesaw



The breaking chain in SO(10)

	SO(10)	\rightarrow	\mathcal{G}_{PS}	\rightarrow	$\mathcal{G}_{\mathrm{SM}}$
	45_{F}	\rightarrow	$({f 1},{f 1},{f 3})$	\rightarrow	$F_1(1, 1)$
	45_{F}	\rightarrow	$({f 1},{f 3},{f 1})$	$ \rightarrow$	$ F_5(1, 3)$
e-III	54_S	\rightarrow	$({f 1},{f 3},{f 3})$	$ \rightarrow$	$ S_6(1, 3) $
, · <i>φ</i>					
Σ_R	SO(10)	$ \rightarrow$	\mathcal{G}_{51}	\rightarrow	$\mathcal{G}_{ ext{SM}}$
Y_{Σ}	45_F	\rightarrow	24_0	\rightarrow	$F_1(1,1)$
\searrow_{ℓ}	45_F	$ \rightarrow$	$ 24_0 $	\rightarrow	$F_5(1,3$
et fermions	54_S	\rightarrow	$ 15_4 $	\rightarrow	$S_6(1,3$





Dimension-7

	Only	L-violating	
	Type: $\psi^2 H^4$		Type: $\psi^2 H^3$.
\mathcal{O}_{LH}	$\epsilon^{ik}\epsilon^{jl}(\ell^T_i C\ell_j)H_kH_l(H^{\dagger}H)$	\mathcal{O}_{LeHD}	$\epsilon^{ij}\epsilon^{kl}(\ell^T_i C\gamma^\mu e)$
	Type: $\psi^2 H^2 D^2$		Type: $\psi^2 H^2$.
\mathcal{O}_{LDH1}	$\epsilon^{ij}\epsilon^{kl}(\ell^T_i CD_\mu\ell_j)(H_kD^\mu H_l)$	\mathcal{O}_{LHW}	$\left[\ \epsilon^{ik} (\epsilon au^I)^{jl} (\ell^T_i Cid) ight]$
\mathcal{O}_{LDH2}	$\epsilon^{ik}\epsilon^{jl}(\ell^T_iCD_\mu\ell_j)(H_kD^\mu H_l)$	\mathcal{O}_{LHB}	$\epsilon^{ik}\epsilon^{jl}(\ell^T_iCi\sigma^\mu$
	Type: $\psi^4 D$		Type: $\psi^4 H$
\mathcal{O}_{duLLD}	$\left -\epsilon^{ij} (\overline{d}^a \gamma^\mu u_a) (\ell^T_i C i D_\mu \ell_j) ight $	\mathcal{O}_{eLLLH}	$\epsilon^{ij}\epsilon^{kl}(\overline{e}\ell_i)$
		\mathcal{O}_{dLQLH1}	$\epsilon^{ij}\epsilon^{kl}(\overline{d}^a\ell_i)$
		\mathcal{O}_{dLQLH2}	$\left e^{ik}\epsilon^{jl}(\overline{d}^a\ell_i) ight $
		\mathcal{O}_{dLueH}	$\left e^{ij}(\overline{d}^a\ell_i)($
		\mathcal{O}_{QuLLH}	$\epsilon^{ij}(\overline{q}^{ak}u_a)$

 $\frac{{}^{3}D}{e}H_{j}H_{k}(iD_{\mu}H_{l})$ $\frac{{}^{2}X}{i\sigma^{\mu\nu}\ell_{j}}H_{k}H_{l}W_{\mu\nu}^{I}$ $\frac{{}^{\mu\nu}\ell_{j}}H_{k}H_{l}B_{\mu\nu}$ $\frac{{}^{H}}{i}(\ell_{j}^{T}C\ell_{k})H_{l}$ $\frac{{}^{i}(\ell_{aj}^{T}C\ell_{k})H_{l}}{i}(\ell_{aj}^{T}C\ell_{k})H_{l}$ $\frac{{}^{i}(\ell_{aj}^{T}C\ell_{k})H_{l}}{i}(\ell_{aj}^{T}C\ell_{k})H_{l}$ $\frac{{}^{i}(\ell_{aj}^{T}C\ell_{k})H_{l}}{i}(\ell_{aj}^{T}C\ell_{k})H_{l}$

$$\mathcal{L}_{eff} = \frac{1}{\Lambda} \mathcal{O}^{(5)} + \frac{1}{\Lambda^3} \mathcal{O}^{(7)} + \dots$$

The dimension-7 operators are suppressed, the UV models which contribute to dimension-7 operators should exclude three types seesaw.

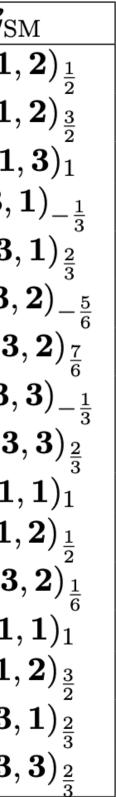
Lepton Number Violating

The UV models contribute to dimension-7 operators without seesaw.

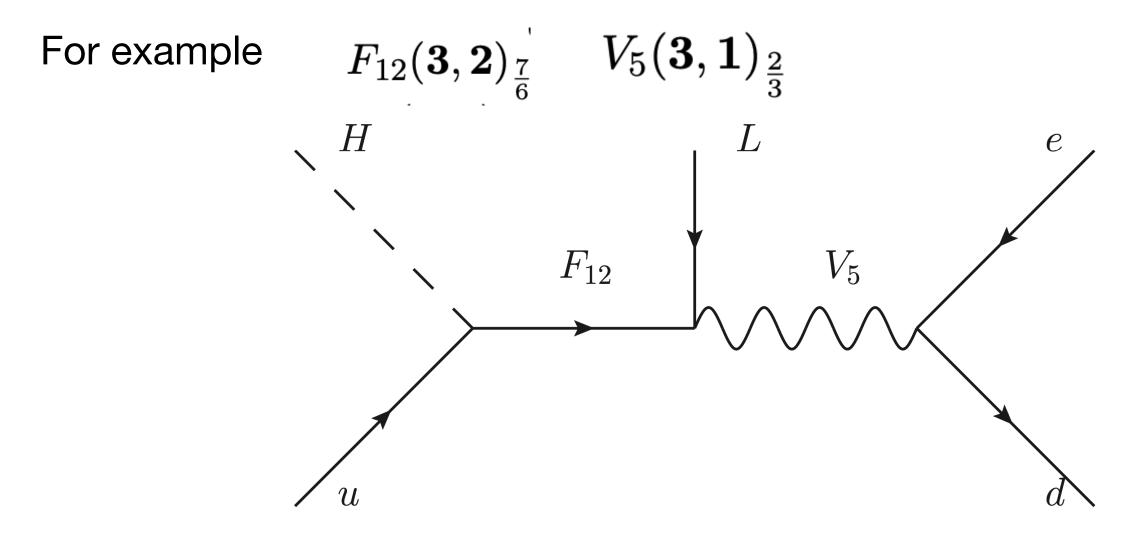
(S_8,F_6)	\rightarrow	\mathcal{O}_{LH}
$(F_3, V_2), \ (V_2, V_3)$	\rightarrow	\mathcal{O}_{LeHD}
$(S_2,S_4),(S_2,F_4)$	\rightarrow	\mathcal{O}_{eLLLH}
(S_{12}, F_{14})	\rightarrow	$ \mathcal{O}_{dLQLH1} $
$egin{array}{llllllllllllllllllllllllllllllllllll$	\rightarrow	\mathcal{O}_{dLQLH2}
$egin{aligned} & (S_{12},F_3),(S_{12},F_{12}),\ & (F_3,V_2),(F_{10},V_3),\ & (F_{12},V_3),(F_{12},V_5),(V_2,V_3) \end{aligned}$	\rightarrow	\mathcal{O}_{dLueH}
$egin{array}{llllllllllllllllllllllllllllllllllll$	\rightarrow	\mathcal{O}_{QuLLH}

The breaking chain in SO(10).

SO(10)	\rightarrow	\mathcal{G}_{51}	\rightarrow	$\mathcal{G}_{ ext{SM}}$		SO(10)	\rightarrow	\mathcal{G}_{PS}	\rightarrow	$\mathcal{G}_{ ext{SN}}$
10_{F}	\rightarrow	5_2	\rightarrow	$F_3(1,2)_{rac{1}{2}}$		10_{F}	\rightarrow	$({f 1},{f 2},{f 2})$	\rightarrow	$F_3(1,$
210_F	$ \rightarrow$	40 ₋₄	$ \rightarrow$	$F_4(1,2)_{rac{3}{2}}^{rac{2}{2}}$		210_F	\rightarrow	$(\overline{f 10}, f 2, f 2)$	\rightarrow	$F_4(1,$
54_F	$ \rightarrow$	15_4	$ \rightarrow$	$F_6(1,3)_1^{2}$		54_F	$ \rightarrow$	$({f 1},{f 3},{f 3})$	\rightarrow	$F_6(1,$
10_{F}	$ \rightarrow$	5_2	$ \rightarrow$	$F_8({f 3},{f 1})_{-rac{1}{3}}$		10_{F}	$ \rightarrow$	$({f 6},{f 1},{f 1})$	\rightarrow	$F_8(3, 3)$
45_{F}	$ \rightarrow$	$\overline{10}_{-4}$	$ \rightarrow$	$F_9({f 3},{f 1})_{rac{2}{3}}$		45_{F}	\rightarrow	$({f 15},{f 1},{f 1})$	\rightarrow	$F_9(3,$
45_{F}	$ \rightarrow$	24_0	$ \rightarrow$	$F_{10}(3,2)_{-\frac{5}{6}}$		45_{F}	\rightarrow	$({f 6},{f 2},{f 2})$	\rightarrow	$F_{10}(3,$
$\overline{126}_F$	$ \rightarrow$	$\overline{45}_{-2}$	$ \rightarrow$	$F_{12}({f 3},{f 2})_{rac{7}{6}}$		$\overline{f 126}_F$	\rightarrow	$({f 15},{f 2},{f 2})$	\rightarrow	$F_{12}(3)$
120_F	$ \rightarrow$	45_2	$ \rightarrow$	$F_{13}(3,3)_{-\frac{1}{3}}$		120_F	\rightarrow	$({f 6},{f 3},{f 1})$	\rightarrow	$F_{13}(3,$
210_F	$ \rightarrow$	40_{-4}	$ \rightarrow$	$F_{14}({f 3},{f 3})_{rac{2}{3}}$		210_F	\rightarrow	$({f 15},{f 3},{f 1})$	\rightarrow	$F_{14}(3)$
16_S	$ \rightarrow$	10 ₋₁	$ \rightarrow$	$S_2(1,1)_1$		16_{S}	$ \rightarrow$	$(\overline{f 4}, {f 1}, {f 2})$	\rightarrow	$S_2(1,$
10_{S}	$ \rightarrow$	5_2	$ \rightarrow$	$S_4(1,2)_{rac{1}{2}}$		10_{S}	$ \rightarrow$	(1 , 2 , 2)	\rightarrow	$S_4(1,$
16_S	$ \rightarrow$	10 ₋₁	$ \rightarrow$	$S_{12}({f 3},{f 2})^2_{rac{1}{6}}$		16_{S}	\rightarrow	$({f 4},{f 2},{f 1})$	\rightarrow	$S_{12}({f 3},$
16_V	\rightarrow	10_{-1}	$ \rightarrow$	$V_2(1,1)_1^{ ext{ o}}$		16_V	$ \rightarrow$	$(\overline{f 4}, {f 1}, {f 2})$	\rightarrow	$V_2(1,$
210_V	$ \rightarrow$	40_{-4}	$ \rightarrow$	$V_3(1,2)_{rac{3}{2}}$		210_V	$ \rightarrow$	$(\overline{f 10}, f 2, f 2)$	\rightarrow	$V_3(1,$
${f 45}_V$	\rightarrow	$\overline{10}_{-4}$	$ \rightarrow$	$V_5({f 3},{f 1})_{2\over 3}^2$		${f 45}_V$	\rightarrow	$({f 15},{f 1},{f 1})$	\rightarrow	$V_5(3,$
210_V	$ \rightarrow$	40 ₋₄	$ \rightarrow$	$V_9({f 3},{f 3})_{2\over 3}^{3}$		210_V	\rightarrow	$({f 15},{f 3},{f 1})$	\rightarrow	$V_9(3,$
					_					



Lepton Number Violating

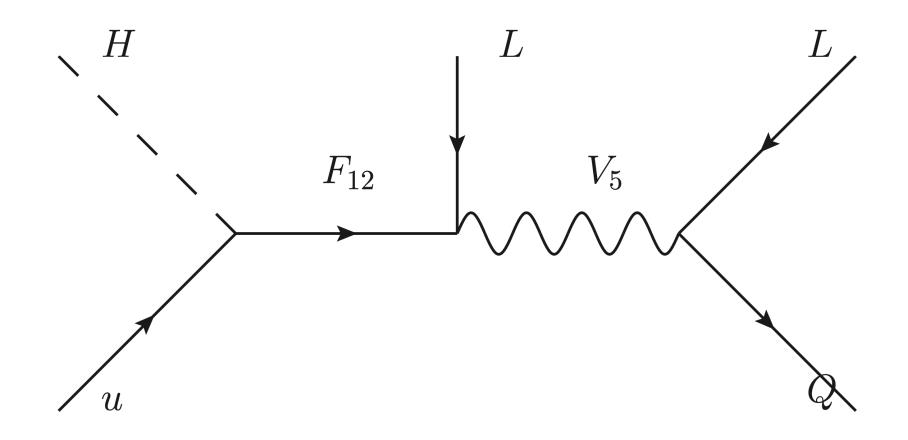


Interaction

$$\begin{aligned} \mathcal{L}_{F_{12}V_{5}} &= -2\mathcal{D}_{F_{12L}H^{\dagger}u^{\dagger}}^{pr} [(\bar{u}_{r})^{a}(F_{12p})_{ai}]H^{\dagger i} \\ &- 2\mathcal{D}_{d^{\dagger}eV_{5}}^{rsp} [(\bar{d}_{r})^{a}\gamma_{\mu}e_{s}](V_{5p})_{a}^{\mu} + 2\mathcal{D}_{L^{\dagger}QV_{5}^{\dagger}}^{srp} [(\bar{l}_{s})^{i}\gamma_{\mu}(q_{r})_{ai}](V_{5p}^{\dagger})_{a}^{\mu} \\ &+ 2\mathcal{D}_{F_{12R}^{\dagger}L^{\dagger}V_{5}}^{psr} \epsilon_{ij}\delta_{a}^{b} [(\bar{l}_{s})^{j}\gamma_{\mu}(F_{12p})^{ai}](V_{5r})_{b}^{\mu} \end{aligned}$$

Effective Lagrangian

$$\mathcal{L}_{eff} = \mathcal{C}_{dLueH}^{f_1 f_2 f_4 f_5} \times \epsilon^{ij} (\overline{d}_{f_1}^a \ell_{if_4}) (u_{af_5}^T Ce_{f_2}) H_j + \mathcal{C}_{QuLLH}^{f_1 f_2 f_4 f_5} \times \epsilon^{ij} (\overline{q}_{f_4}^{ak} u_{af_5}) (\ell_{kf_1}^T C\ell_{if_2}) H_j$$



Wilson coefficient

$$\mathcal{C}_{dLueH}^{f_1 f_2 f_4 f_5} = \sum_{p_1 p_2} \frac{16 \mathcal{D}_{d^{\dagger} eV_5}^{f_1 f_4 p_1} \mathcal{D}_{F_{12L} H^{\dagger} u^{\dagger}}^{p_2 * f_5} \mathcal{D}_{F_{12L} H^{\dagger} u^{\dagger}}^{p_2 f_2 p_1 *}}{M_{F_{12}} M_{V_5}^2}$$
$$\mathcal{C}_{QuLLH}^{f_1 f_2 f_4 f_5} = \sum_{p_1 p_2} \frac{16 \mathcal{D}_{F_{12L} H^{\dagger} u^{\dagger}}^{p_1 * f_5} \mathcal{D}_{F_{12L} H^{\dagger} V_5}^{p_1 f_2 p_2 *}}{M_{F_{12}} M_{V_5}^2} \mathcal{D}_{L^{\dagger} QV_5^{\dagger}}^{f_1 f_4 p_2}}$$

 $(ap)^{a\mu}$

Baryon Number Violating

Dimension-6 $\Delta(B-L) = 0$

	Type: <i>B</i> -violating
\mathcal{O}_{duq}	$\epsilon^{abc}\epsilon^{jk}(d_a^TCu_b)(q_{cj}^TC\ell_k)$
\mathcal{O}_{qqu}	$\epsilon^{abc}\epsilon_{jk}(q_{aj}^TCq_{bk})(u_c^TCe)$
\mathcal{O}_{qqq}	$\epsilon^{abc}\epsilon_{jn}\epsilon_{km}(q_{aj}^T C q_{bk})(q_{cm}^T C \ell_n)$
\mathcal{O}_{duu}	$\epsilon^{abc}(d_a^T C u_b)(u_c^T C e)$

The breaking chain in SO(10).

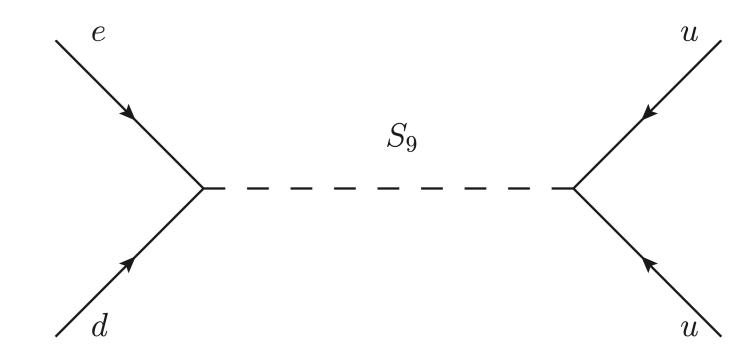
SO(10)	\rightarrow	\mathcal{G}_{PS}	\rightarrow	$\mathcal{G}_{ ext{SM}}$
45_V	\rightarrow	$({f 6},{f 2},{f 2})$	\rightarrow	$V_7({f 3},{f 2})_{-rac{5}{6}}$
16_V	$ \rightarrow$	$({f 4},{f 2},{f 1})$	$ \rightarrow$	$V_8(3,2)_{rac{1}{6}}$
120_{S}	$ \rightarrow$	$({f 6},{f 1},{f 3})$	$ \rightarrow$	$S_9({f 3},{f 1})_{-rac{4}{2}}$
10_{S}	$ \rightarrow$	$({f 6},{f 1},{f 1})$	$ \rightarrow$	$S_{10}({f 3},{f 1})_{-rac{1}{2}}^{3}$
120_{S}	$ \rightarrow$	$({f 6},{f 3},{f 1})$	$ \rightarrow$	$S_{14}({f 3},{f 3})_{-rac{1}{3}}^{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$

SO(10)	\rightarrow	\mathcal{G}_{51}	\rightarrow	$\mathcal{G}_{ ext{SM}}$
45_V	\rightarrow	24_0	\rightarrow	$V_7({f 3},{f 2})_{-rac{5}{6}}$
16_V	\rightarrow	10_{-1}	\rightarrow	$V_8({f 3},{f 2})_{rac{1}{6}}$
120_S	\rightarrow	$\overline{45}_{-2}$	\rightarrow	$S_9({f 3},{f 1})_{-rac{4}{3}}$
10_{S}	\rightarrow	5_2	\rightarrow	$S_{10}(3,1)_{-rac{1}{3}}$
120_{S}	\rightarrow	45_2	\rightarrow	$S_{14}({f 3},{f 3})_{-rac{1}{3}}^{3}$

The UV models contribute to dimension-6 operators.

$$\begin{array}{c|c|c} S_{10} \,, \, V_7 \,, \, V_8 & \to & \mathcal{O}_{duq} \\ S_{10} \,, \, V_7 & \to & \mathcal{O}_{qqu} \\ S_{10} \,, \, S_{14} & \to & \mathcal{O}_{qqq} \\ S_9 \,, \, S_{10} & \to & \mathcal{O}_{duu} \end{array}$$

For example



 $\mathcal{L}_{S_9} = -2\mathcal{D}_{d^{\dagger}e^{\dagger}S_9}^{rsp} [(\bar{d}_r)^a C\bar{e}_s] (S_{9p})_a - 4\mathcal{D}_{S_9^{\dagger}u^{\dagger}u^{\dagger}}^{prs} \epsilon^{abc} [(\bar{u}_r)^b C(\bar{u}_s)^c] (S_{9p}^{\dagger})^a ,$

Baryon Number Violating

Dimension-7 $\Delta(B-L) = 2$

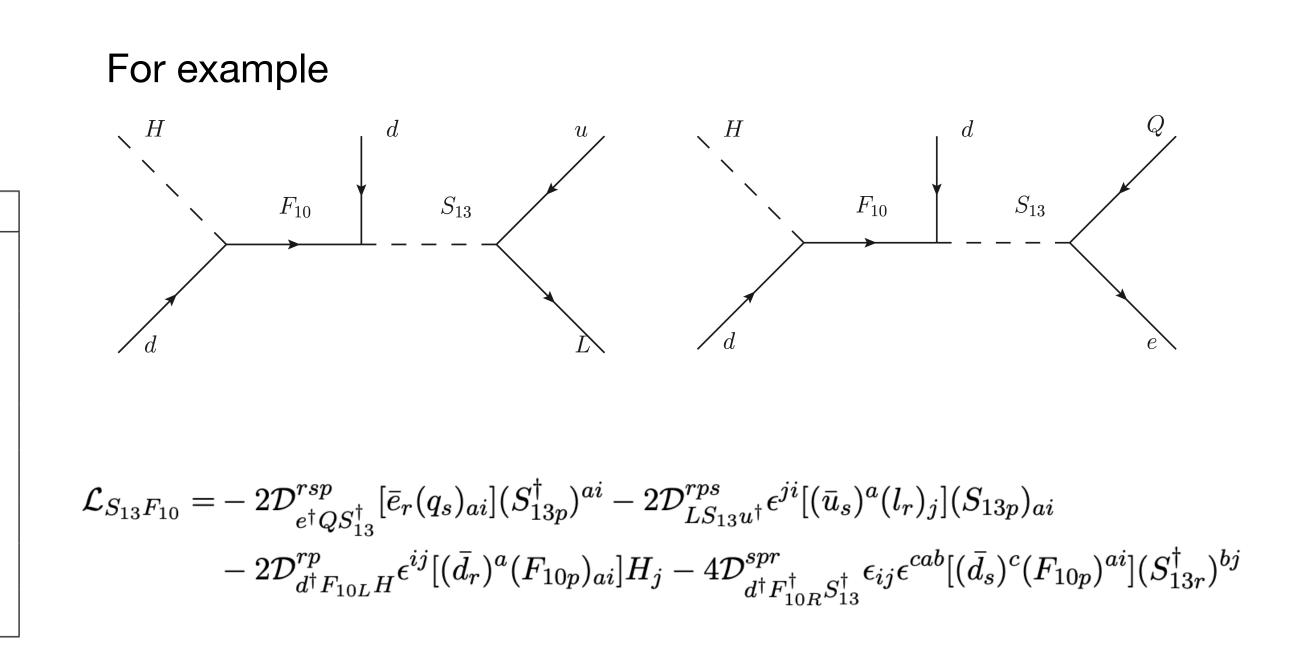
	<i>B</i> -violating							
	Type: $\psi^4 D$		Type: $\psi^4 H$					
\mathcal{O}_{LQddD}	$\epsilon^{abc}(\overline{\ell}^i\gamma^\mu q_{ai})(d_b^TCiD_\mu d_c)$	\mathcal{O}_{LdudH}	$\epsilon^{abc}\epsilon_{ij}(\overline{\ell}^i d_a)(u_b^T C d_c) H^{*j}$					
\mathcal{O}_{edddD}	$\epsilon^{abc}(\overline{e}\gamma^{\mu}d_{a})(d_{b}^{T}CiD_{\mu}d_{c})$	${\cal O}_{LdddH}$	$\epsilon^{abc}(\overline{\ell}^i d_a)(d_b^T C d_c) H_i$					
		\mathcal{O}_{eQddH}	$-\epsilon^{abc}(\overline{e}Q_{ai})(d_b^TCd_c)H^{*i}$					
		\mathcal{O}_{LdQQH}	$-\epsilon^{abc}(\overline{\ell}^k d_a)(q_{bk}^T C q_{ci})H^{*i}$					

The breaking chain in SO(10).

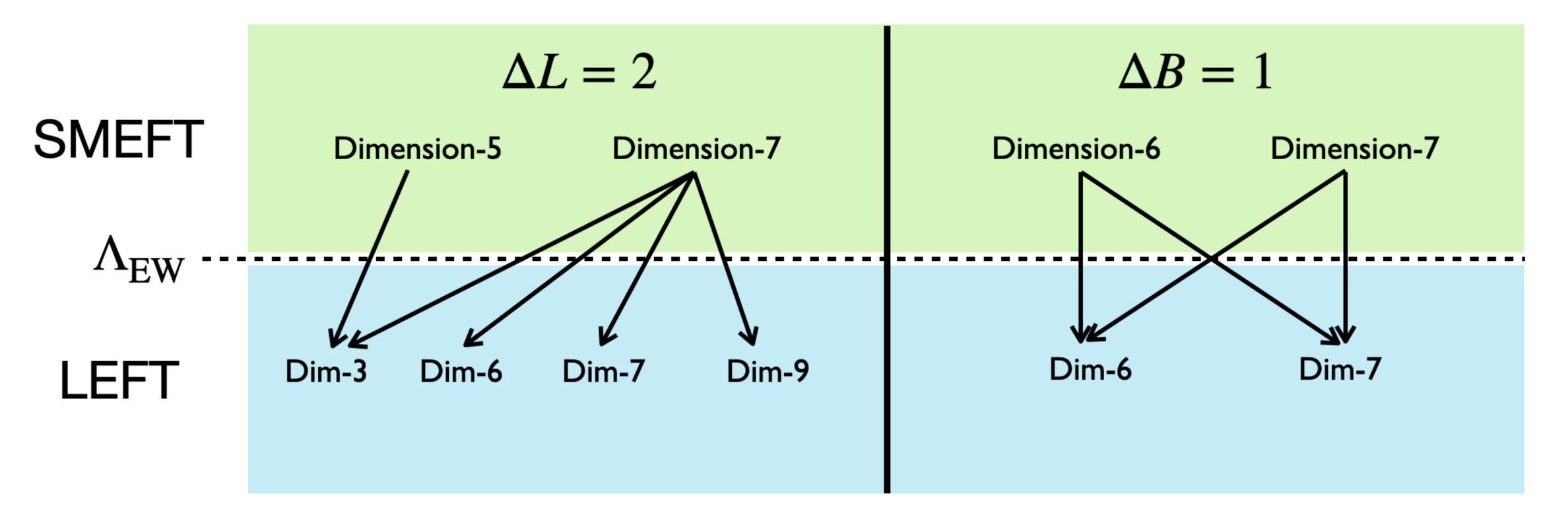
SO(10)	\rightarrow	\mathcal{G}_{51}	\rightarrow	$\mathcal{G}_{ ext{SM}}$	SO(10)	\rightarrow	\mathcal{G}_{PS}	\rightarrow	$\mathcal{G}_{ ext{SM}}$
45_{F}	\rightarrow	24_0	\rightarrow	$F_1(1,1)_0$	45_F	\rightarrow	$({f 1},{f 1},{f 3})$	\rightarrow	$F_1(1,1)_0$
16_{F}	$ \rightarrow$	$\overline{10}_{-1}$	$ \rightarrow$	$F_2(1,1)_1$	16_{F}	$ \rightarrow$	$(\overline{f 4},{f 1},{f 2})$	$ \rightarrow$	$F_2(1,1)_1$
10_{F}	$ \rightarrow$	5_2	$ \rightarrow$	$F_3(1,2)_{rac{1}{2}}$	10_{F}	$ \rightarrow$	(1 , 2 , 2)	$ \rightarrow$	$F_3(1,2)_{rac{1}{2}}$
10_{F}	$ \rightarrow$	5_2	\rightarrow	$F_8({f 3},{f 1})_{-rac{1}{2}}^2$	10_{F}	\rightarrow	$({f 6},{f 1},{f 1})$	\rightarrow	$F_8({f 3},{f 1})_{-rac{1}{3}}^2$
45_F	\rightarrow	24_0	$ \rightarrow$	$F_{10}(3,2)_{-\frac{5}{6}}^{3}$	45_{F}	$ \rightarrow$	$({f 6},{f 2},{f 2})$	$ \rightarrow$	$F_{10}(3,2)_{-\frac{5}{6}}$
16_{F}	$ \rightarrow$	10 ₋₁	$ \rightarrow$	$F_{11}(3,2)_{\frac{1}{6}}$	16_{F}	$ \rightarrow$	(4 , 2 , 1)	$ \rightarrow$	$F_{11}(3,2)_{\frac{1}{6}}$
16_S	$ \rightarrow$	5_2	$ \rightarrow$	$S_{11}(3,1)_{-rac{1}{3}}^{\circ}$	16_S	$ \rightarrow$	$({f 6},{f 1},{f 1})$	$ \rightarrow$	$S_{11}(3,1)_{-\frac{1}{3}}$
16_S	$ \rightarrow$	10 ₋₁	\rightarrow	$S_{12}({f 3},{f 2})_{rac{1}{c}}$	16_{S}	$ \rightarrow$	(4 , 2 , 1)	$ \rightarrow$	$S_{12}({f 3},{f 2})_{rac{1}{6}}$
$\overline{126}_S$	$ \rightarrow$	$\overline{45}_{-2}$	\rightarrow	$S_{13}({f 3},{f 2})_{rac{7}{6}}^{^{\mathrm{o}}}$	$\overline{126}_S$	\rightarrow	$({f 15},{f 2},{f 2})$	\rightarrow	$S_{13}({f 3},{f 2})_{rac{7}{6}}^{\circ}$

The UV models contribute to dimension-7 operators which do not contribute to dimension-6 operators.

$$\begin{array}{c|c} (S_{11}, S_{12}), (S_{11}, F_2), (S_{11}, F_{11}) & \to & \mathcal{O}_{LdddH} \\ (S_{11}, S_{13}), (S_{11}, F_1), (S_{11}, F_{11}), (S_{13}, F_{10}) & \to & \mathcal{O}_{LdudH} \\ (S_{11}, S_{13}), (S_{11}, F_3), (S_{11}, F_8), (S_{13}, F_{10}) & \to & \mathcal{O}_{eQddH} \end{array}$$



Matching between SMEFT and LEFT



The particles in LEFT: $(u_R, u_L, d_L, d_R, e_R, e_L, \nu_L)$, $n_u = 2, n_d = 3, n_e = 3, n_\nu = 3$.

The involving LEFT operator form : $(\bar{q}q\bar{l}l)$, $(\bar{q}q\bar{l}lD)$, $(\bar{q}q\bar{q}qll)$, (qqql), (qqqlD), (qqqlD), $(qqq\bar{l}D)$, $q = (u, d, s)^T$

The QCD Lagrangian with external source

$$\mathcal{L} = \mathcal{L}_{ ext{QCD}}^0 + \mathcal{L}_{ ext{ext}} \;,$$
 sy

 $\mathcal{L}_{\text{ext}} = \bar{q}\gamma^{\mu} \left(v_{\mu} + \gamma^{5} a_{\mu} \right) q - \bar{q} \left(s - i\gamma^{5} p \right) q + \bar{q}\sigma_{\mu\nu} \bar{t}^{\mu\nu} q ,$

 $SU(3)_L \otimes SU(3)_R$ chiral symmetry

Dimension-6 and dimension-7 LEFT LNV operators $(\bar{q}\Gamma q)(l\Gamma l^c)$

Dimension-9 LEFT LNV operators

$(\bar{q}\Gamma q)(\bar{q}\Gamma q)(l\Gamma l^c)$

 $SU(3)_L \otimes SU(3)_R$ chiral symmetry

U(x) = 0

ymmetry breaking

$$\begin{aligned} \mathcal{L}_{2} &= \frac{F_{0}^{2}}{4} \operatorname{Tr} \left[D_{\mu} U (D^{\mu} U)^{\dagger} \right] + \frac{F_{0}^{2}}{4} \operatorname{Tr} \left(\chi U^{\dagger} + U \chi^{\dagger} \right) \\ \mathcal{L}_{MB}^{(1)} &= \langle \bar{B} (i \gamma^{\mu} D_{\mu} - M_{0}) B \rangle + \frac{D}{2} \langle \bar{B} \gamma_{\mu} \gamma_{5} \{ u^{\mu}, B \} \rangle + \frac{F}{2} \langle \bar{B} \gamma_{\mu} \gamma_{5} [u^{\mu} SU(3)_{V} \\ SU(3)_{V} \\ \end{aligned}$$

The chiral Lagrangian

The chiral Lagrangian

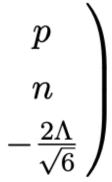
symmetry breaking

$$(B+U+...)(l\Gamma l^c)$$

 $SU(3)_V$ symmetry

$$\exp\left(i\frac{\phi(x)}{F_0}\right), \ \phi(x) = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta \end{pmatrix} \quad B = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ \\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} \\ \Xi^- & \Xi^0 \end{pmatrix}$$

$^{\mu},B] angle$.



Quark bilinear with spurion

$(\bar{q}_L\Gamma\Sigma_Lq_L), \quad (\bar{q}_R\Gamma\Sigma_Rq_R), \quad (\bar{q}_R\Gamma\Sigma q_L), \quad (\bar{q}_L\Gamma\Sigma^{\dagger}q_R),$

	<i>ąq</i>	$\bar{q}\gamma^5 q$	$\bar{q}\gamma^{\mu}q$	$\bar{q}\gamma^5\gamma^\mu q$	$\bar{q}\sigma^{\mu u}q$	$\bar{q}\overset{\leftrightarrow}{\partial}^{\mu}q$	$\bar{q}\gamma^5\overleftrightarrow{\partial}^{\mu}q$	$\bar{q}\gamma^{\mu}\overleftrightarrow{\partial}^{v}q$	$ar q \gamma^5 \gamma^\mu \overleftrightarrow^{ u} q$
C	+	+	_	+	_	_	_	+	_
P	+	_	+	_	+	+	_	+	

	ĒΒ	$\bar{B}\gamma^5 B$	$ar{B} \gamma^\mu B$	$ar{B}\gamma^5\gamma^\mu B$	$ar{B}\sigma^{\mu u}B$	$ar{B} \stackrel{\leftrightarrow}{D}{}^{\mu} B$
C	+	+	_	+	_	_
P	+	_	+	_	+	+
	$ar{B}\gamma^5 \stackrel{\leftrightarrow}{D}^\mu B$	$ar{B} \gamma^{\!\mu} \stackrel{\leftrightarrow}{D}^{\!\nu} B$	$ar{B} \gamma^5 \gamma^\mu \overset{\leftrightarrow}{D}^ u B$	u_{μ}	Σ_{\pm}	\mathcal{Q}_{\pm}
C	—	+	_	+	+	Ŧ
P	_	+	_	_	±	±

$$\Sigma_{\pm} = u \left(\Sigma^{\dagger} \pm \Sigma \right) u \pm u^{\dagger} \left(\Sigma^{\dagger} \pm \Sigma \right) u^{\dagger},$$

 $Q_{\mp} = u^{\dagger} \left(\Sigma_R \pm \Sigma_L \right) u \mp u \left(\Sigma_R \pm \Sigma_L \right) u^{\dagger},$

$$egin{aligned} &u_{\mu}=i(u^{\dagger}\partial_{\mu}u-u\partial_{\mu}u^{\dagger})\,,\ &
abla_{\mu}X=\partial_{\mu}+\left[\Gamma_{\mu},X
ight],\quad &\Gamma_{\mu}=rac{1}{2}(u^{\dagger}\partial_{\mu}u+u\partial_{\mu}u)\,. \end{aligned}$$

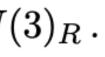
$$SU(3)_{L} \otimes SU(3)_{R}$$

$$\begin{pmatrix} q_{L} \\ q_{R} \\ \bar{q}_{L} \\ \bar{q}_{R} \\ \Sigma \\ \Sigma^{\dagger} \\ \Sigma_{L} \\ \Sigma_{R} \end{pmatrix} \rightarrow \begin{pmatrix} Lq_{L} \\ Rq_{R} \\ \bar{q}_{L}L^{\dagger} \\ \bar{q}_{R}R^{\dagger} \\ R\Sigma_{L}^{\dagger} \\ L\Sigma^{\dagger}R^{\dagger} \\ L\Sigma_{L}L^{\dagger} \\ R\Sigma_{R}R^{\dagger} \end{pmatrix}, \quad L \in SU(3)_{L}, R \in SU$$

$$u \rightarrow RuV^{\dagger} = VuL^{\dagger} \qquad u = \sqrt{U}$$

$$\begin{pmatrix} u_{\mu} \\ \Sigma_{-} \\ \Sigma_{+} \\ Q_{-} \\ Q_{+} \\ B \end{pmatrix} \rightarrow \begin{pmatrix} Vu_{\mu}V^{\dagger} \\ V\Sigma_{-}V^{\dagger} \\ VQ_{-}V^{\dagger} \\ VQ_{+}V^{\dagger} \\ VBV^{\dagger} \end{pmatrix}, \quad V \in SU(3)_{V}.$$

$$p_{\mu}u^{\dagger}).$$



Quark bilinear with two spurion

 $(\bar{q}_L\Gamma\Sigma_Lq_L)(\bar{q}_L\Gamma\Sigma_Lq_L)\,,$ $(\bar{q}_L\Gamma\Sigma_Lq_L)(\bar{q}_R\Gamma\Sigma_Rq_R)\,,$ $(ar q_L\Gamma\,\Sigma^\dagger q_R)(ar q_R\Gamma\,\Sigma^\dagger q_L)\,,$ $(ar q_L\Gamma\,\Sigma_L q_L)(ar q_R\Gamma\,\Sigma q_L)\,,$ $(\bar{q}_R\Gamma\Sigma_R q_R)(\bar{q}_R\Gamma\Sigma q_L)\,,$

 $(\bar{q}_R\Gamma\Sigma_R q_R)(\bar{q}_R\Gamma\Sigma_R q_R),$ $(ar q_L\Gamma\,\Sigma^\dagger q_R)(ar q_L\Gamma\,\Sigma q_R)\,,$ $(ar q_R\Gamma\,\Sigma q_L)(ar q_R\Gamma\,\Sigma q_L)\,,$ $(ar q_L\Gamma\,\Sigma_L q_L)(ar q_L\Gamma\,\Sigma^\dagger q_R)\,,$ $(\bar{q}_R\Gamma\Sigma_R q_R)(\bar{q}_L\Gamma\Sigma^{\dagger}q_R)$.

operators $0\nu\beta\beta$

$$\mathcal{L}_{\Delta L=2}^{(9)} = \frac{1}{v^5} \sum_{i} \left[\left(C_{iR}^{(9)} \bar{e}_R C \bar{e}_R^T + C_{iL}^{(9)} \bar{e}_L C \bar{e}_L^T \right) O_i^{(9)} + C_i^{(9)} \bar{e}\gamma^{\mu}\gamma^5 C \bar{e}^T O_i^{\mu(9)} \right]$$

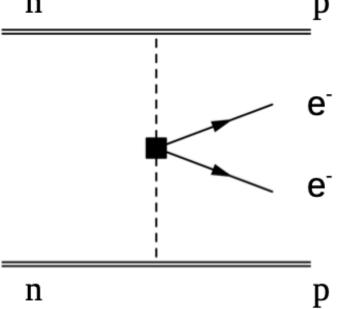
$$O_{1+}^{(9)} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_L^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} + \bar{q}_R^{\alpha} \gamma_{\mu} \tau^a q_R^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ Q_{2-}^{(9)} = \bar{q}_R^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_L^{\alpha} \ \bar{q}_L^{\beta} \gamma^{\mu} \tau^a q_L^{\beta} \ Q_{2-}^{(9)} = -2 \langle Q_{a-} Q_{a+} \rangle + 2 \langle Q_{a+} Q_{a-} \rangle = 0 \,,$$

$$O_{2+}^{(9)} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ Q_{2-}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_L^{\beta} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ Q_{2+}^{\beta} = \bar{q}_L^{\alpha} \gamma_{\mu} \tau^a q_L^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\alpha} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ \bar{q}_R^{\beta} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ \bar{q}_R^{\beta} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ \bar{q}_R^{\beta} \gamma^{\mu} \tau^a q_R^{\beta} \ \bar{q}_R^{\beta} \gamma$$

The vertex $\pi\pi ee$ can be obtained for $0\nu\beta\beta$.

$$\begin{split} Q_{1+} &= u^{\dagger} (\Sigma_{1R} - \Sigma_{1L}) u + u (\Sigma_{1R} - \Sigma_{1L}) u^{\dagger} , & \Sigma_{1+} \\ Q_{1-} &= u^{\dagger} (\Sigma_{1R} + \Sigma_{1L}) u - u (\Sigma_{1R} + \Sigma_{1L}) u^{\dagger} , & \Sigma_{1-} \\ Q_{2+} &= u^{\dagger} (\Sigma_{2R} - \Sigma_{2L}) u + u (\Sigma_{2R} - \Sigma_{2L}) u^{\dagger} , & \Sigma_{2+} \\ Q_{2-} &= u^{\dagger} (\Sigma_{2R} + \Sigma_{2L}) u - u (\Sigma_{2R} + \Sigma_{2L}) u^{\dagger} . & \Sigma_{2-} \end{split}$$

$$\begin{split} \Sigma_{1+} &= u^{\dagger} (\Sigma_1 + \Sigma_1^{\dagger}) u^{\dagger} + u (\Sigma_1 + \Sigma_1^{\dagger}) u \\ \Sigma_{1-} &= u^{\dagger} (\Sigma_1 - \Sigma_1^{\dagger}) u^{\dagger} - u (\Sigma_1 - \Sigma_1^{\dagger}) u \\ \Sigma_{2+} &= u^{\dagger} (\Sigma_2 + \Sigma_2^{\dagger}) u^{\dagger} + u (\Sigma_2 + \Sigma_2^{\dagger}) u \\ \Sigma_{2-} &= u^{\dagger} (\Sigma_2 - \Sigma_2^{\dagger}) u^{\dagger} - u (\Sigma_2 - \Sigma_2^{\dagger}) u \end{split}$$



Dimension-6 and dimension-7 LEFT BNV operators

 $(q_Lq_Lq_L)\ell$, $(q_Rq_Rq_R)\ell$, $(q_Lq_Lq_R)\ell$, $(q_Rq_Rq_L)\ell$

Three spurions can be added

 $(T_L q_L T_L q_L T_L q_L)\ell, \quad (T_R q_R T_R q_R T_R q_R)\ell, \quad (T_L q_L T_R q_R T_R q_R)\ell, \quad (T_L q_L T_L q_L T_R q_R)\ell,$

$$\begin{pmatrix} q_L \\ q_R \\ T_L \\ T_R \end{pmatrix} \rightarrow \begin{pmatrix} Lq_L \\ Rq_R \\ T_L L^{\dagger} \\ T_R R^{\dagger} \end{pmatrix}, \quad L \in SU(3)_L, R \in SU(3)_R.$$

$$(T_L u) \rightarrow (T_L u) V^{\dagger},$$

$$(T_R u^{\dagger}) \rightarrow (T_R u^{\dagger}) V^{\dagger},$$

$$B \rightarrow V u V^{\dagger},$$

$$u^{\mu} \rightarrow V u^{\mu} V^{\dagger},$$

Type $BT_LT_LT_L$ LO $\epsilon^{acd}(\lambda^A)^b_d(T_Lu)_a(T_Lu)_b(T_Lu)_c(B^{A^T}CL),$ $\epsilon^{bcd}(\lambda^A)^a_d(T_Lu)_a(T_Lu)_b(T_Lu)_c(B^{A^T}CL),$

> NLO $\epsilon^{abc}(T_L u)_a(T_L u)_b(T_L u)_c(B^{A^T} C \gamma_{\mu} L) u^A_{\mu},$ $f_{ABC} \epsilon^{bcd} (\lambda^A)^a_d(T_L u)_a(T_L u)_b(T_L u)_c(B^{B^T} C \gamma_{\mu} L) u^C_{\mu},$ $d_{ABC} \epsilon^{bcd} (\lambda^A)^a_d(T_L u)_a(T_L u)_b(T_L u)_c(B^{B^T} C \gamma_{\mu} L) u^C_{\mu},$

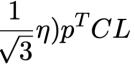
The corresponding chiral Lagrangian for $(u_L u_L d_L L)$ can be expand as

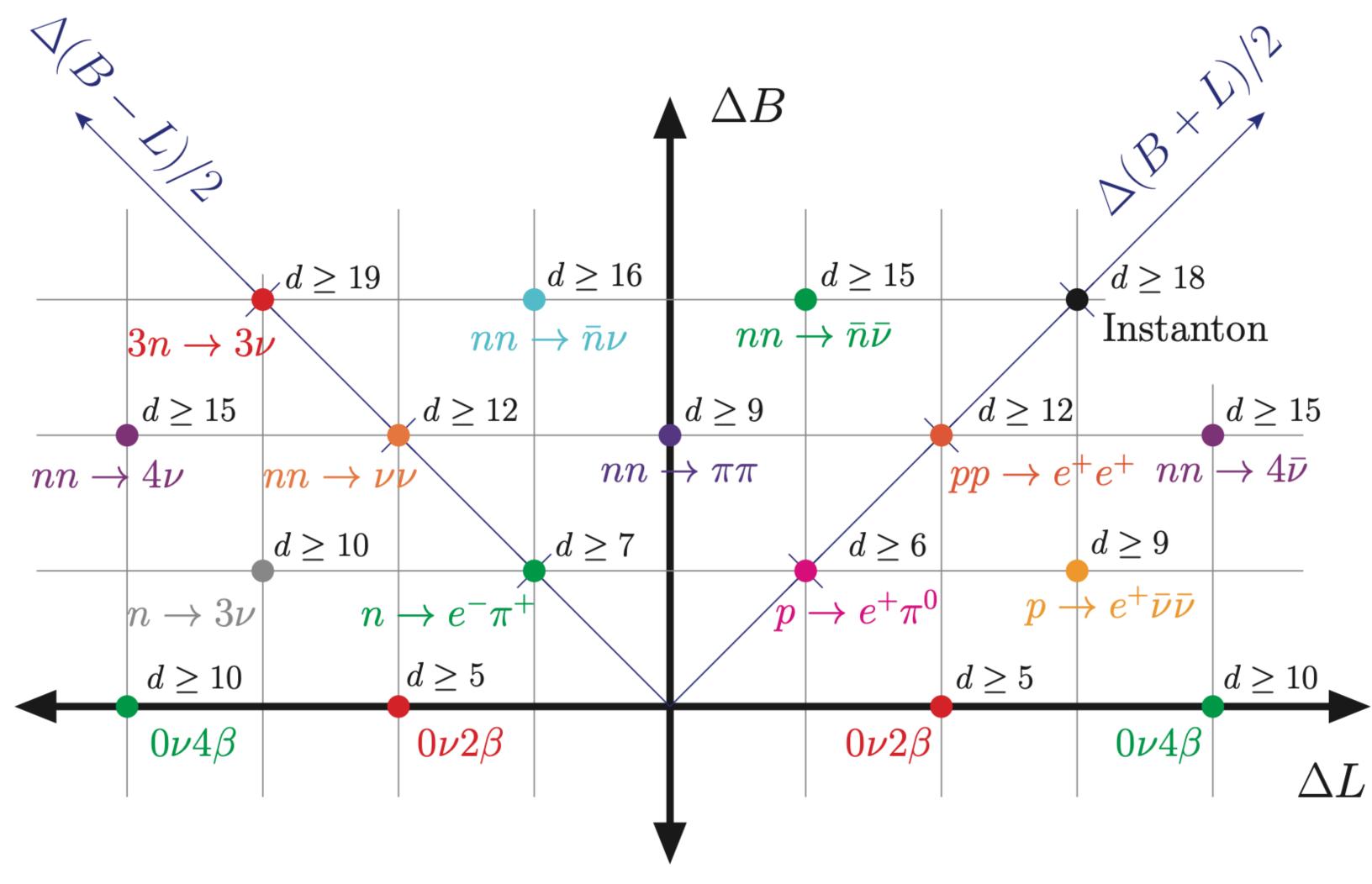
$$\begin{split} &\epsilon^{aca}(\lambda^{A})^{b}_{d}(T_{L}u)_{a}(T_{L}u)_{b}(T_{L}u)_{c}(B^{A^{T}}CL) \\ &= \epsilon^{123}(\lambda^{A})^{b}_{3}(T_{L}u)_{1}(T_{L}u)_{b}(T_{L}u)_{2}(B^{A^{T}}CL) + \epsilon^{231}(\lambda^{A})^{b}_{1}(T_{L}u)_{2}(T_{L}u)_{b}(T_{L}u)_{3}(B^{A^{T}}CL) \\ &+ \epsilon^{312}(\lambda^{A})^{b}_{2}(T_{L}u)_{3}(T_{L}u)_{b}(T_{L}u)_{1}(B^{A^{T}}CL) + \epsilon^{132}(\lambda^{A})^{b}_{2}(T_{L}u)_{1}(T_{L}u)_{b}(T_{L}u)_{3}(B^{A^{T}}CL) \\ &+ \epsilon^{213}(\lambda^{A})^{b}_{3}(T_{L}u)_{2}(T_{L}u)_{b}(T_{L}u)_{1}(B^{A^{T}}CL) + \epsilon^{321}(\lambda^{A})^{b}_{1}(T_{L}u)_{3}(T_{L}u)_{b}(T_{L}u)_{2}(B^{A^{T}}CL) \\ &= p^{T}CL + (\pi^{0} + \frac{1}{\sqrt{3}}\eta, \sqrt{2}\pi^{+}, \sqrt{2}K^{+}) \cdot (p, n, -\frac{2}{\sqrt{6}}\Lambda)^{T}CL + (\pi^{0} + \frac{1}{\sqrt{3}}\eta)p^{T}CL + (-\pi^{0} + \frac{1}{\sqrt{3}})p^{T}CL + (-\pi^{0} + \frac{1}{\sqrt{3}}\eta)p^{T}CL + (-\pi^{0} + \frac{1}{\sqrt{3}}\eta)(-\pi^{0} + \frac{1}{\sqrt{3}})(\pi^{0} + \frac{1}{\sqrt{3}}\eta, \sqrt{2}\pi^{+}, \sqrt{2}K^{+}) \cdot (p, n, -\frac{2}{\sqrt{6}})^{T} \\ &+ 2\pi^{+}K^{0}(\pi^{0} + \frac{1}{\sqrt{3}}\eta, \sqrt{2}\pi^{+}, \sqrt{2}K^{+})(\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda, \Sigma^{-}, \Xi^{-})^{T} + \dots. \end{split}$$

Contribute to the processes

$$p \to \pi^{0} + e^{+}, \qquad p \to \pi^{+} + \pi^{-} + e^{+}, \\ p \to \eta + e^{+}, \qquad p \to \eta + \pi^{0} + e^{+}, \\ n \to \pi^{-} + e^{+}, \qquad n \to \pi^{0} + \pi^{-} + e^{+}, \\ n \to \eta + \pi^{-} + e^{+}, \end{cases}$$

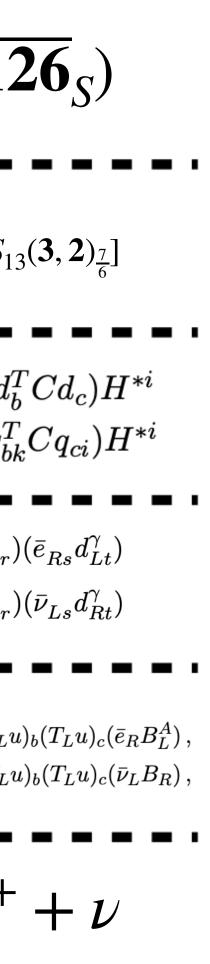
 $p \rightarrow \pi^0 + \pi^0 + e^+$





Heeck, Takhistov 1910.07647

Summary		
$\Delta L = 2$		$\Delta B = 1$
$(\overline{126}_F, 45_V)$	Grand unified theory	$(45_F, \overline{126})$
$[F_{12}(3,2)_{\frac{7}{6}},V_{5}(3,1)_{\frac{2}{3}}]$	LRSM, Leptoquark model,	$[F_{10}(3,2)_{-\frac{5}{6}}, S_{13}(3,2)_{-\frac{5}{6}}]$
$\epsilon^{ij}(\overline{d}_{f_1}^a\ell_{if_4})(u_{af_5}^TCe_{f_2})H_j \ \epsilon^{ij}(\overline{q}_{f_4}^{ak}u_{af_5})(\ell_{kf_1}^TC\ell_{if_2})H_j$	Standard model effective field theory	$-\epsilon^{abc}(\overline{e}Q_{ai})(d_b^TCd_b) -\epsilon^{abc}(\overline{\ell}^k d_a)(q_{bk}^TCq_c)$
$ar{u}_R \gamma^\mu d_R ar{e}_{R,i} \gamma_\mu C ar{ u}_{L,j}^T \ ar{u}_R d_L ar{e}_{L,i} C ar{ u}_{L,j}^T$	Low energy effective field theory	$egin{aligned} \epsilon_{lphaeta\gamma}(d^{lpha T}_{Rp}Cd^{eta}_{Rr})(ar{e}_{Rs}d^{eta})\ \epsilon_{lphaeta\gamma}(u^{lpha T}_{Rp}Cd^{eta}_{Rr})(ar{ u}_{Ls}d^{eta}) \end{aligned}$
$egin{aligned} &\langle ar{B}Q_+\gamma^\mu B angle(ar{e}_R\gamma_\mu Car{ u}_L^T)\ &\langle ar{B}\Sigma_+B angle(ar{e}_L Car{ u}_L^T) \end{aligned}$	QCD chiral Lagrangian with heavy baryon	$\epsilon^{acd} (\lambda^A)^b_d (T_L u)_a (T_L u)_b (T_L u$
$n \rightarrow p + e + \nu^c$	Nuclear Probes (0vBB or proton decay)	$p \rightarrow \pi^+ +$



Thonks !