

ICTP-AP International Centre for Theoretical Physics Asia-Pacific 国际理论物理中心-亚太地区

Detecting Gravitational Waves from Cosmic Phase Transitions

Huaike Guo

April 18, 2025

Alba Romero, ..., HG, ..., PRL [2102.01714] Shuo Guan, HG, Dian Jiao, Qingyuan Liang, Lei Wu, Yang Zhang (to appear)

大统一理论的作象学和宇宙学研讨会 Workshop on Grand Unified Theories: Phenomenology and Cosmology (GUTPC)

杭州 · Hangzhou, April 17-22, 2025

GUT Comes with Symmetry Breakings

Consequences of symmetry breakings:
Phase transitions
Topological solitons (topological defects) monopoles, cosmic strings, domain walls, ...
Non-Topological solitons Fermiballs (or PBH), ...

Multiple Sources for gravitational waves!

2

King, Pascoli, Turner, Zhou, PRL [2005.13549], JHEP [2106.15634]

The Spectra

$$\begin{split} \Omega_{\rm coll}(f)h^2 &= 1.67 \times 10^{-5} \Delta \left(\frac{H_{\rm pt}}{\beta}\right)^2 \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^2 \\ &\times \left(\frac{100}{g_*}\right)^{1/3} S_{\rm env}(f), \end{split}$$

$$\Upsilon = 1 - (1 + 2 au_{
m sw} H_{
m pt})^{-1/2}$$
 (RD)
HG, Sinha, Vagie, White, JCAP [2007.08537]

$$\Upsilon = \frac{2[1 - y^{3(w-1)/2}]}{3(1-w)}$$

4

HG, Yang Xiao, ... [2410.23666]

$$\begin{array}{l} \text{Reduces to Ellis, et al, JCAP [2003.07360]} \\ h^2 \Omega_{\text{turb}}(f) = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\text{turb}} \,\alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{1/3} \, v_w \, S_{\text{turb}}(f) \end{array}$$

Chiara Caprini et al JCAP [1512.06239]

Stochastic Gravitational Waves $h_{ij}(t,\mathbf{x}) = \sum_{A=+,\times} \int_{-\infty}^{\infty} df \int d^2 \hat{\mathbf{n}} \tilde{h}_A(f,\hat{\mathbf{n}}) e^A_{ij}(\hat{\mathbf{n}}) e^{-2\pi i f(t-\hat{\mathbf{n}}\cdot\mathbf{x}/c)}$ Gaussian Stationary $\langle \tilde{h}_A^*(f, \mathbf{\hat{n}})\tilde{h}_{A'}(f', \mathbf{\hat{n}}')\rangle = \frac{3H_0^2}{32\pi^3}\delta^2(\mathbf{\hat{n}}, \mathbf{\hat{n}}')\delta_{AA'}\delta(f - f')f^{-3}\Omega_{\rm GW}(f)$ Isotropic Unpolarized Example Stochastic Gravitational Wave x 10 Gravitational Wave Signa **Energy density Spectrum** 0 $\Omega_{\rm GW}(f) = \frac{d\rho_{\rm GW}}{\rho_c d \log f}$ 0.1 0.5 0.2 0.3 0.4 0.6 0.7 0.8 0.9

5

Time (sec)

From Theory to Experiment

LIGO, LISA/Taiji/Tianqin, PTA, ...

6

this way

Questions to Answer

7

Set limits when signal is absent

- Parameter estimation when signal is discovered
 - What is precise shape of the signal spectrum?
 - What are the values of alpha, beta, vw, T*, etc?
 - What is the underlying particle physics model?
 - What are the values of the model parameters?
 - What this implies for collider experiments?

Basic Properties

Cai, Pi, Sasak, PRD [1909.13728]

~100Hz (~PeV - EeV) high scale

Hubble size: 1/H*

nHz (~100MeV) QCD scale

~mHz : (~100GeV) weak scale

<image>

LIGO-Virgo-Kagra

Cross-Correlation Method

- Glitches and gating
- Narrow spectral artifacts
- Non-Gaussian noise
- Magnetic noise
- Calibration uncertainty

$$\langle \hat{C}^{IJ}(f) \rangle = \Omega_{\rm GW}(f)$$

LVK collaborations, PRD [2101.12130]

10

The Bayesian Analysis Framework
calibration uncertaintyLikelihood
$$\log p(\hat{C}_{IJ}(f)|\theta_{gw},\lambda) \propto -\frac{1}{2} \sum_{f} \frac{\left[\hat{C}_{IJ}(f) - \lambda \Omega_{gw}(f,\theta_{gw})\right]^{2}}{\sigma_{IJ}^{2}(f)}$$
Gaussian noise
 $\sigma_{IJ}^{2}(f) \approx \frac{1}{2T\Delta f} \frac{P_{i}(f)P_{i}(f)}{\gamma_{IJ}^{2}(f)S_{0}^{2}(f)}$ Priors for two analysis strategies:broken power lawSound waves, or bubble collision $\frac{1}{2T\Delta f} \frac{P_{i}(f)P_{i}(f)}{\gamma_{IJ}^{2}(f)S_{0}^{2}(f)}$ $\frac{1}{2}$ $\frac{P_{i}(f)P_{i}(f)P_{i}(f)P_{i}(f)}{\gamma_{IJ}^{2}(f)S_{0}^{2}(f)}$ $\frac{1}{2}$ $\frac{P_{i}(f)P_{i}(f)P_{i}(f)}{\gamma_{IJ}^{2}(f)S_{0}^{2}(f)}$ $\frac{1}{2}$ $\frac{P_{i}(f)P_{i}(f)P_{i}(f)P_{i}(f)}{\gamma_{IJ$

Results

O1+O2+O3@LIGO (H1, L1), Virgo

- No Evidence for Broken Power Law Signal
- No Evidence for Bubble Collision Domination Signal
- No Evidence for Sound Waves Domination Signal Bubble Collision

9	95% CL UL v	vith fixed Tp	ot and beta/l	Hpt
P	henomenologi	cal model (bu	ubble collision	ns)
		$\Omega^{95\%}_{coll}(25 \text{ Hz})$		
$\beta/H_{\rm pt} \setminus T_{\rm pt}$	10 ⁷ GeV	10 ⁸ GeV	10 ⁹ GeV	10 ¹⁰ GeV
0.1	9.2×10^{-9}	8.8×10^{-9}	1.0×10^{-8}	7.2×10^{-1}
1	1.0×10^{-8}	8.4×10^{-9}	5.0×10^{-9}	
10	4.0×10^{-9}	6.3×10^{-9}		
		nc	sensitivity	/

Broken Power Law 95% CL UL (CBC+BPL) $Ω_{ref} = 6.1 \times 10^{-9}$ $Ω_* = 5.6 \times 10^{-7}$ $Ω_{BPL}(25 \text{ Hz}) = 4.4 \times 10^{-9}$

See also Jiang, Huang, JCAP[2203.11781], Yu, Wang, PRD[2211.13111]

Detection in Space

Stochastic GW detection in space:

- Complicated, and correlated noise
- Complications from time-delay interferometry
- Solution: null channel method, or with a detector network

Studies on PT detection in space:

Gowling, Hindmarsh, Hooper, Torrado, JCAP [2209.13551] Gowling, Hindmarsh, JCAP [2106.05984] Boileau, et al, JCAP [2209.13277] Lewicki, et al, PRD [2403.03769] Caprini, et al, JCAP [2403.03723]

Ruan, Liu, Guo, Wu, Cai, Nature Astron [2002.03603]

Cosmo SGB detectable down to $\Omega_{GW} \sim O(10^{-13})$ Boileau et al, MNRAS [2105.04283]

Higgs Self-Couplings

