Non-Abelian Domain walls

Bowen Fu (付博文) 21 April 2025 The 2nd Workshop on Grand Unified Theories: Phenomenology and Cosmology (GUTPC 2025)

NORTHEASTERN UNIVERSITY

- Brief introduction of Z_2 domain walls
- S_4 domain walls
- A_4 domain walls

- Brief introduction of Z_2 domain walls
- S_4 domain walls
- A_4 domain walls

Based on BF, S. F. King, L. Marsili, S. Pascoli, J. Turner, Y-L Zhou, 2409.16359 and follow up works

Domain wall formation

Kibble mechanism: Z_2 - a simplest case $V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$ $\langle \phi \rangle = \pm v \qquad v = 1$ ϕ

Domain wall formation

Kibble mechanism: Z_2 - a simplest case $V(\phi) = -\frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$ $\langle \phi \rangle = \pm v \qquad v = 1$ ϕ

Domain wall formation

Kibble mechanism: Z_2 - a simplest case $V(\phi) = -\frac{1}{2}\mu^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4}$ $\langle \phi \rangle = \pm v \qquad v =$ ϕ

Z_2 domain wall

$$\phi(z) = v \tanh \frac{z}{\Delta}$$
 $\Delta = \sqrt{\frac{2}{\lambda v^2}}$

$$\mathcal{E} = \frac{1}{2}\phi^{\prime 2} + \Delta V \qquad \sigma = \int \mathcal{E} \, dz = -\frac{1}{2}\phi^{\prime 2} + \Delta V$$

Tension (surface energy density)

Gravitational wave from DWs

• Exact discrete symmetry \implies stable DWs

• Bias \implies unstable DWs

 $V_{\text{bias}} \equiv V(v_2) - V(v_1)$

<u>Saikawa [2017]</u>

Pressure difference $\Delta p \propto V_{\text{bias}}$

 $\Omega_{\mathrm{GW}}^{\mathrm{peak}}\left(\sigma, V_{\mathrm{bias}}\right)$

 $f > f_{\text{peak}}, \Omega_{\text{GW}} \propto f^{-1}$ $f < f_{\text{peak}}, \Omega_{\text{GW}} \propto f^3$

Discrete Symmetries

- Abelian: Z_n
- Non-Abelian: $A_n, S_n, \Delta(27)$

Roles: flavour symmetries, dark matter, ...

S_4 scalar theory

The octahedral/cube group S_4 : •

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$$

The most general renormalisable flavon potential: •

$$V(\phi) = -\frac{\mu^2}{2}I_1 + \frac{g_1}{4}I_1^2 + \frac{g_2}{2}I_2$$
$$I_1 - \phi^2 + \phi^2 + \phi^2 - I_2 - \phi^2\phi$$

$$l_1 = \phi_1^2 + \phi_2^2 + \phi_3^2,$$

$$\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, \quad U = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $I_2 = \phi_1^2 \phi_2^2 + \phi_2^2 \phi_3^2 + \phi_3^2 \phi_1^2$

 S_4 vacuum structure $g_2 > 0$ $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \right\} v$ $\overline{g_1}$ $-\frac{3}{2}g_1 < g_2 < 0$ $\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\1 \end{pmatrix} \right\} u \right\}$ u = - $\sqrt{3g_1 + 2g_2}$

Stability of DWs

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

 v_2

11

Gravitational wave

Naive estimation

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

ϵ_{13}^v	ϵ^v_{14}	ϵ_{15}^v	ϵ_{16}^v	ϵ_{12}^u	ϵ^u_{13}	ϵ^u_{14}	ϵ^u_{15}	ϵ^u_{16}	ϵ^u_{17}
$3\hat{\epsilon}$	$\hat{\epsilon}$	$4\hat{\epsilon}$	$5\hat{\epsilon}$	$2\hat{\epsilon}$	$4\hat{\epsilon}$	$6\hat{\epsilon}$	$\hat{\epsilon}$	$3\hat{\epsilon}$	$5\hat{\epsilon}$

 $V(\phi) = -\frac{\mu^2}{2}I_1 + \frac{g_1}{4}I_1^2 + \frac{g_2}{2}I_2 + AI_3$ $I_1 = \phi_1^2 + \phi_2^2 + \phi_3^2$ $I_2 = \phi_1^2 \phi_2^2 + \phi_2^2 \phi_3^2 + \phi_3^2 \phi_1^2$

 $I_3 = \phi_1 \phi_2 \phi_3$

A_4 vacuum structure

$$u_{\mp} = \frac{\mu}{\sqrt{3g_1 + 2g_2}} \left(\sqrt{a^2 + 1} \mp a \right) \,,$$

TL

ΤII

TIII+, TIII-

Mestastable A_4 domain wall

$$V_{\mp} = -\frac{3\mu^{4}}{4(3g_{1} + 2g_{2})} \begin{pmatrix} 1 + \frac{2}{3}a^{2} \mp \frac{2}{3}a\sqrt{a^{2} + 1} \end{pmatrix} \begin{pmatrix} \tilde{\phi}_{1} \\ u_{3} \\ \tilde{\phi}_{3} \\ u_{6} \\ 1 \\ (\sqrt{a^{2} + 1} \mp a)^{2} \end{pmatrix} \begin{pmatrix} \tilde{\phi}_{1} \\ u_{6} \\ u_{7} \\ u_{8} \\ u_{7} \\ u_{9} \\ u_{9} \\ u_{9} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{1} \\ u_{5} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{1} \\ u_{4} \\ u_{6} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{1} \\ u_{4} \\ u_{5} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{1} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{4} \\ u_{5} \\ u_{5} \\ u_{1} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{4} \\ u_{5} \\ u_{4} \\ u_{5} \\ u_{5} \\ u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{4} \\ u_{5} \\ u_{5} \\ u_{6} \\$$

Unstable or Metastable?

Unstable or Metastable?

Unstable or Metastable?

Summary and Outlook

 Non-abelian DWs have more interesting and nontrivial structure and phenomena

• S_4, A_4, \ldots

- Real scalar to complex scalar
- Stability of the DWs need to be explored in detail
- Collision of two DWs into another DW

explored in detail

