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Introduction of dark sector:

Dark matter has a lot of candidates:
WIMPs, axions, ...

Dark sector:

* dark big bang

* dark landscape

* may only couple to SM particles through gravity

DS may stay i a meta-stable vacuum.

|:> phase transition / GW



What GWs can tell us?

Frequency:

Peak:

Shape:

typical scale of the system
when the phase transition happens  :

information of the energy density
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cosmic string:
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the best fit of IR is flatter than k3

dynamics of the system, expansion history of Universe

IR: k3 causality, envelope

UV part: model parameter dependence



First order phase transition of dark sector

In the dark sector, the nucleation rate per unit volume:
r
v~ Cmge

The condition for first order phase transition:
I'/H* ~1

Assume that the dark sector only takes a subdominant fraction

of the whole Universe, and PT happens in RD

We consider a complex field model
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Dynamics of bubble growth

In a dark sector phase transition, suppose the system 1s scalar-dominated

4
Fivag = 47rR2atW'y — gﬂ'R?’pvac

The boost factor of the bubble walls
Rpyse R
Y(R) = 52 =

3otV R

In our case
R~T"T~H'! Ry~m

When the bubble collisions occur, the boost factor of bubble walls can be

extremely large
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GW calculation
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In RD hg;T(n, k) = -

n
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For a complex field  Tj;(x,t) = T/ (x,t) + Tj5(x, t) = 8;p0;p + p*8;00;0
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The GW spectrum function Qew <‘3nh£T(77» k) ’2>



GWs tfrom bubble collisions

Envelope approximation:
T;; of the bubble walls vanishes after collision >

the IR part scales as k3

Beyond envelope approximation:
the bubble wall surface energy density drops envelope case, arXiv: 1605.01403v2

as R % with a damping term after collision
the IR part transit from k* to k3

In our case: >

scalar dominant
influence of expansion of Universe

detailed shap e of IR . . . beyond envelope, arXiv: 1707.03111
we need full numerical simulation




Difficulties of simulating large boost dynamics

3+1 D simulation:
If we fix the model and the number of bubbles in simulation

The physical size of the simulation box: Ly, ~ N,°R, ~ N/*yR,

Lattice spacing: dx ~ Ry/~y
The grids per spatial dimension N = Ly, /0x 2
The total resource: N3T x ~8

1+1 D simulation:
Bubbles nucleate on z axis in flat space time ,
The initial condition has SO(2,1) symmetry P; = Z @bounce(\/ t* — 22 — o — (2 — 2j)?)
The total resource NT x ~v* j=0 \ )

SO(2,1)
For large boost factor, the resource grows quickly



Fill the gap

simulation large gap FOFT in reality
>
boost factor 7Y
3+1D simulation
| simulation

1+1 D simulation model FOFT in reality
‘ -

large enough ¥ boost factor 7Y



Bubble configuration

Phase structure:
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a/a; = 1.1 a/a; =2.1 a/a; = 3.1

The cosmic string can form in phase transition, but for m > H case, the
energy density of string is much small than bubble walls



Bubble configuration
Radial a/a; =1.1 “a/a; =21

mode:
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Structure of T;; for bubble collisions

After bubble collision, the bubble wall is still very thin
Introduce a parameter 6 to describe the width of the wall
TgT(’I], k) = Aij,kl(f{) / Tkl(n, x)e‘ik'xé dS for k< 6!

sur

8¢ ~ A6 Tiu(n,x) = OppBip x 6

Then Tjj5(n,k) ocd™
From another point of view  ¢(n,k,d) =

C;(n, k)51
—0

51 4 dp
(2m)°

E?T(n, k) = Aij,kl(l:i)/o / dQpp,6(n, P)d(n, k — p)

The integration of p is UV dominant for & < 6 *



Structure of T;; for bubble collisions
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Free field approximation

The bubble collision is a nonlinear process
But, for the largest k mode ky ~ym > m

The kinetic energy 1s much larger than the potential term
0,0'® +V'(®) =0 |:> 0,0"® ~ (0  forlarge k mode

extend to all mode free field

important for GW

H m momentum k ym



1+1 D case

If we treat both the radial mode and the goldstone as a free scalar

s:\/tz—xz—yz

02p + %83,0 —0%p=0
520 + %ase 520 =0
For both kind of modes
pls,k) = = (s (R)e M) 4 p_(R)eMe- )
then the zz component of energy momentum tensor in 1+1 D
12(5,K) = [ Sop(k—p)(s,p)o(s, k1)

_ g2 / 9Pk — p) Z D0 (9) e — p)e—epren(i=p)s—sn)



1+1 D case
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T’ (s,k) oscillates in s, and the frequency 1s k

We impose several 1+1 D simulations, the numerical results: yellow: T2, blue: TZpZ
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In expanding universe

A free massless field in RD:

0261 K) + 22 0,0(n, k) + Kp(n. k) = 0

Mode function:

o(n, k) = :

a(n)

Energy momentum tensor

Aij (k)
a’(n)

(A+(k)e_ik(77_ni) + A (k)eik(n—m))

T .
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In expanding universe

Integrate the time first:

* dn Ciepk(nm) _ €O e g
icy i) — Eil — -k — 1)kn; Eil — -k + 1)kn; -k 1
/m a(n)coskne 2T ( %( i(p )n)+ Z( ip-k+ )n))(p #1)
In IR limit
log(km o log (k"h) TT
hi;(k) = 1 c1 — f['z ’LJO

The GW spectrum function Qg k3 log (kni), km <1
2
But for radial mode 8;p(n, k) + Ta@np(n, k) + k*p(n, k) + a®*m?p(n, k) = 0

The contribution of radial mode to the integration stops at 17 ~ v/ Ho

Therefore, the IR part of GW spectrum is mainly produced by the goldstone mode



Results

Ap

We do a 15362 size numerical GW power spectrum for7 =01
simulation '
10_8?
We use AMReX to build our
phase transition code and
impose two layers of grids 1072
=
The effective grid size is 30723 .&
10—10_:
10_11-:
AMR method e T Y P

k/H,



Summary and future work

Summary:

* 1n dark sector first order phase transition, the GW production can be
scalar-dominant

* the boost factor of the bubble walls can be extremely large and can
easily exceed the ability of numerical simulation

* the T;; 1s dominated by the UV mode of the field

* we can treat the field as a free field when calculating the GW

* the far IR region of GW power spectrum scales as k3log?k

Future work:
* when will the free field approximation ends
* amore analytic model to deal with the UV mode



Thank you



GW calculation
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GWs tfrom bubble collisions

envelope approximation:

thin wall approximation

+ T;j of the bubble walls vanishes once they collide with others

= the IR part of GW power spectrum scales as k>

beyond envelope approximation:

thin wall approximation

+ the bubble wall surface energy density drops as R ™2
with a damping term after collision

= the IR part of GW power spectrum transit from k* to k3

we want to achieve this 1 field language

=

envelope case, arXiv: 1605.01403v2

~

beyond envelope, arXiv: 1707.03111



Adaptive Mesh Refinement method

we extend the ability of 3+1 D simulation by using AMR method

bubble is a codimensional-1 object

we use AMReX to build our phase transition code

grids with three levels




Adaptive Mesh Refinement method

the condition for building thinner grid level:

V®| > C(y)mwv
we fix the model parameter and do several simulations to determine C(y)
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