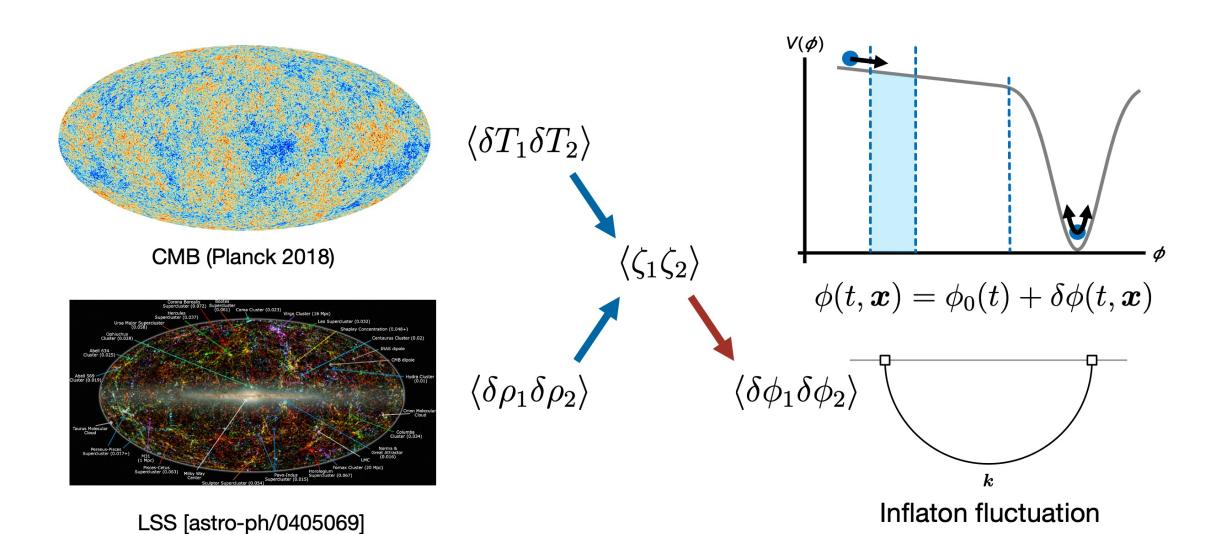
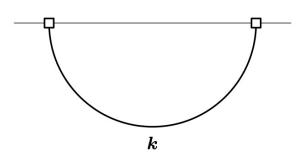
A model builder's guide to cosmological collider physics

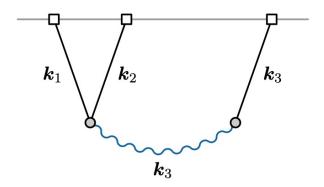

Zhong-Zhi Xianyu (鲜于中之)

Department of physics, Tsinghua University

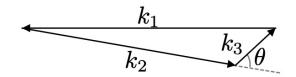

The 2nd Workshop on Grand Unified Theories: Phenomenology and Cosmology
HIAS UCAS | Hangzhou, April 19, 2025

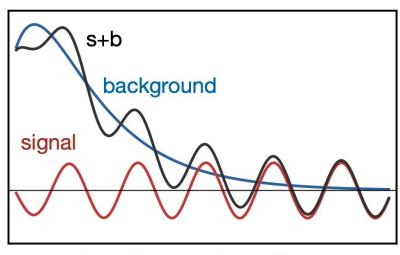
In collaboration with Yunjia Bao, Xingang Chen, Yanou Cui, Bingchu Fan*, JiJi Fan, Haoyuan Liu*, Tao Liu, Qianshu Lu, Shiyun Lu, Zhehan Qin*, Matthew Reece, Xi Tong, Lian-Tao Wang, Yi Wang, Jiaju Zang*, Hongyu Zhang*, Yi-Ming Zhong

What is the cosmological collider?



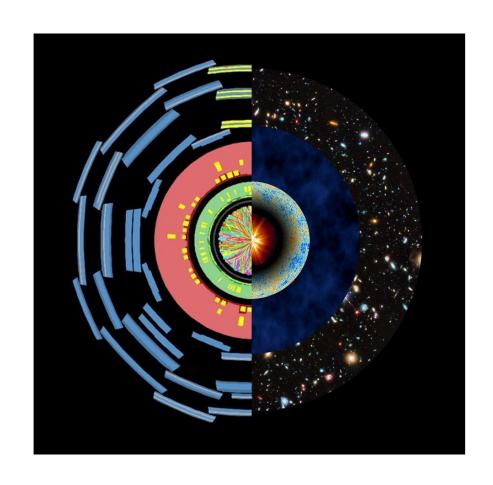
What is the cosmological collider?


 $\langle \delta \phi_1 \delta \phi_2 \rangle$


Inflaton fluctuation

 $\langle \delta \phi_1 \delta \phi_2 \delta \phi_3 \rangle$

Heavy partice



log of momentum ratio

"Frequency ~ mass, angular dep ~ spin"
-- Wrong but convenient

What is the cosmological collider?

What's the energy scale of this machine? – Hubble

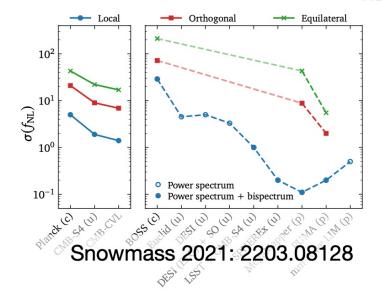
$$r \sim 0.1 \left(\frac{H}{10^{14} \text{GeV}}\right)^2 \sim 0.1 \left(\frac{E}{10^{16} \text{GeV}}\right)^4$$

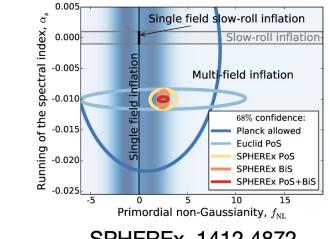
 $r \lesssim 0.03$ (Planck 2018) => H $\lesssim 10^{14}$ GeV

Happen to be around the GUT scale!

H (or E) could be much lower, at the expense of a more tuning potential: $r=16\epsilon$

We have good reasons to consider high-scale inflation models


[Caveat: all formulae here true only for SFSR models]


Current status

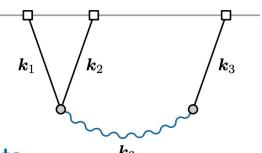
The size of the 3-point correlator is measured by a dimensionless parameter f_{NI} .

[Caveat: the f_{NI} parameter is defined shape by shape. Strictly speaking, f_{NI} 's of differential shapes cannot be compared directly, although people often do this if only for convenience.]

Best constraint from Planck: f_{NI} (local) \leq O(5); LLS down to O(0.1) and 21cm to O(0.01)?

SPHEREX, 1412.4872

Credit: SPHEREX

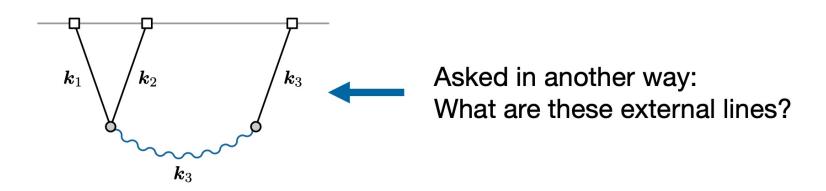

People have started to seriously search for CC signals from real data! Constraint from Planck (CMB) [Sohn et al., 2404.07203]; BOSS (LSS) [Cabass et al. 2404.01894] Constraint of realistic particle models [Bao, Wang, ZX, Zhong, 2504.02931] Timely to study more systematically the CC phenomenology of BSM new physics!

Plan for the rest of the talk

Starting point: You have a nice new-physics model probably at a very high scale. Goal: Let's work out CC signals of your model.

1) Three questions

- 1. Where are large-scale fluctuation from? (What are external modes?)
- 2. How does your model couple to the external modes?
- 3. How to estimate the size of CC signals of your model? With them answered, you can already do forecast and put rough constraints.


2) An example and more examples

Quasi-single-field inflation / axion couplings / modulated reheating / more ...

3) Computing full shapes, a quick summary

Diagrammatic expansion / Numerical strategies / Analytical methods / Signal extraction Full shapes ultimately important for signal searches in the real data

Question 1: Where is the curvature fluctuation from?

• Vanilla models: Single-field slow-roll inflation $\mathscr{L}=-\frac{1}{2}(\partial_{\mu}\phi)^2-V(\phi)$ CC physics is largely model independent; the specific form of $V(\phi)$ is irrelevant; Relevant is that the inflaton background has a slow-roll solution at the observable scales:

$$\phi_0(t) \simeq \phi_{0*} + \dot{\phi}_0 t \qquad \dot{\phi}_0 \simeq 3600 H^2$$

- Multifield inflation: the external mode being a particular linear combination of fields.
- Not from an inflaton?
 Curvaton [Kumar, Sundrum, 1908.11378] / modulated reheating [Lu, Wang, ZX, 1907.07390]

Question 2: How does your model talk to the inflaton?

- You need to couple your model to the inflaton. Two options.
- Option 1: Couple your model to the full inflaton $\phi(t, \boldsymbol{x})$ in a Lorentz invariant Lagrangian Pros: Relativistic invariant, more in line with the normal practice of particle model building; Coupling sizes follow from dimension counting [RG] arguments, easier to estimate Cons: Not completely model independent; a "fundamental" inflaton is assumed:

$$\phi(t, \boldsymbol{x}) = \phi_0(t) + \delta\phi(t, \boldsymbol{x})$$

- Option 2: "EFT of inflation" Only the fluctuation $\delta\phi(t,m{x})$ is experimentally confirmed.
 - => An EFT for the fluctuation only; A Goldstone of broken time diffeomorphism
 - => Couple your model only to the fluctuation [Cheung et al., 0709.0293]

Pros: (Seemingly) more model independent

Cons: Since $\delta\phi(t, \boldsymbol{x})$ is the Goldstone of broken time diff, the couplings are no longer Lorentz invariant; uncontracted time indices allowed; power-counting obscured

• I'll go with Option 1: Couple your model to the inflaton $\phi(t, \boldsymbol{x})$ The inflaton has an approximate shift symmetry [In plain words: it has a very flat potential] which you don't want to spoil => Either the inflaton is derivatively coupled or the coupling is slow-roll suppressed

• Then, expand the full inflaton as $\phi(t, \boldsymbol{x}) = \phi_0(t) + \delta\phi(t, \boldsymbol{x})$ At the fluctuation level, this introduces both boost-breaking interactions and corrections to Lagrangian parameters

• This means, in particular, that the mass spectrum of your model can be significantly distorted by the inflaton couplings.

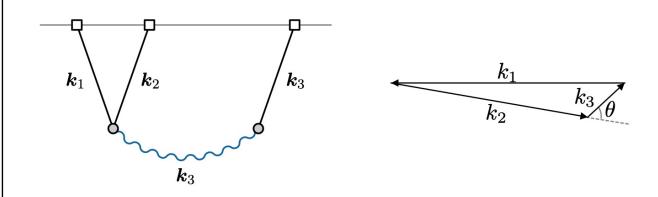
Example

Lorentz invariant coupling

$$\frac{1}{\Lambda^2}\sigma^2(\partial_\mu\phi)^2$$

Boost breaking coupling

$$rac{\dot{\phi}_0}{\Lambda^2}\sigma^2\delta\phi'$$


Mass correction

$$\frac{\dot{\phi}_0^2}{\Lambda^2}\sigma^2$$

Question 3: how large is the CC signal in your model?

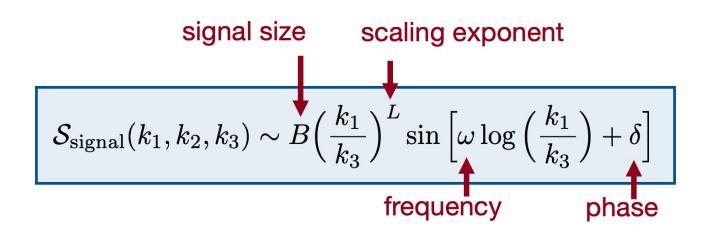
- You have all ingredients (internal & external lines & their couplings). Then you can compute Feynman diagrams.
- But wait: The calculation is quite hard.
 Probably you don't want to do it if your CC signal is actually very tiny.
- Can we roughly understand the signal without really computing it?
- Here I only consider 3pt correlators and also ignore spins.

[For full kinematics with 4pt correlators, see Qin, ZX, 2205.01692]

The dimensionless shape function:

$$S(k_1, k_2, k_3) = -\frac{(k_1 k_2 k_3)^2}{(2\pi)^4 P_{\zeta}^2} \left(\frac{H}{\dot{\phi}_0}\right)^3 \langle \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \rangle'$$

 $P_{\zeta} \simeq 2 imes 10^{-9}\,$ is the measured 2pt function

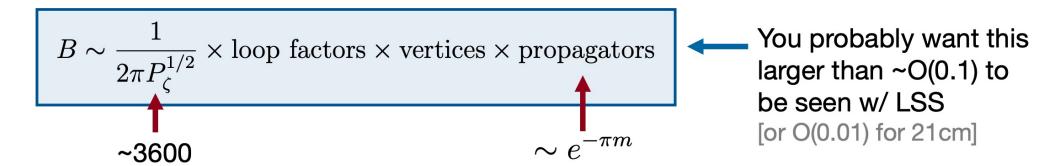

For the 3pt function, the signal part can be described by 4 parameters (ignoring spin info)

Obviously, most crucial is the overall size B (the dimensionless f_{NL} for the CC signal)

[See Wang, ZX, 1910.12876 for details]

Other parameters very useful as well. L tells the scaling of the particle (tree or loop), ω tells the mass [Wang, ZX, Zhong, 2109.14635]

A subtler but very telling parameter is the phase δ . [See Qin, ZX, 2205.01692]


$$B \sim \frac{1}{2\pi P_{\zeta}^{1/2}} \times \text{loop factors} \times \text{vertices} \times \text{propagators}$$

		B	L	ω
$s = 0, m > \frac{3}{2}, \mu = 0$ [7]	tree	$e^{-\pi m}$	$\frac{1}{2}$	$\sqrt{m^2-rac{9}{4}}$
$s = 0, 0 < m < \frac{3}{2}, \mu = 0$ [7]	tree	_	$rac{1}{2}-\sqrt{rac{9}{4}-m^2}$	0
$s > 0, m > s - \frac{1}{2}, \mu = 0$ [13]	tree	$e^{-\pi m}$	$\frac{1}{2}$	$\sqrt{m^2 - (s - \frac{1}{2})^2}$
$s > 0, \ 0 < m < s - \frac{1}{2}, \ \mu = 0 \ [13]$	tree	-	$\frac{1}{2} - \sqrt{(s - \frac{1}{2})^2 - m^2}$	0
$s=0, m>rac{3}{2}, \mu=0$ [7]	1-loop	$e^{-2\pi m}$	2	$2\sqrt{m^2-rac{9}{4}}$
Dirac fermion, $m > 0$, $\mu = 0$ [8]	1-loop	$e^{-2\pi m}$	3	2m
Dirac fermion, $m > 0$, $\mu > 0$ [8]	1-loop	$e^{2\pi\mu-2\pi\sqrt{m^2+p^2}}$	$\overline{\mu^2}$ 2	$2\sqrt{m^2+\mu^2}$
$s = 1, m > \frac{1}{2}, \mu \ge 0$ [10]	1-loop	$e^{2\pi\mu-2\pi m}$	2	$2\sqrt{m^2-rac{1}{4}}$

From 2109.14635

Subtleties and pitfalls

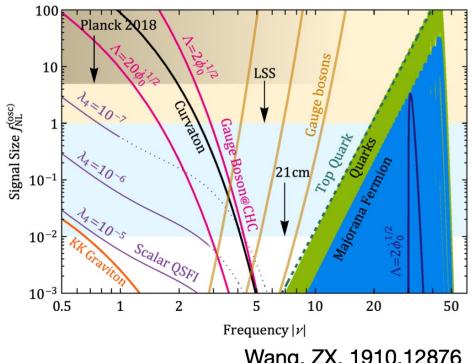
• It's not so trivial to get an observably large cosmological collider signal [-- unless you arbitrarily fine-tune parameters; But you don't, because you are a good model builder.]

- Take our example $\frac{1}{\Lambda^2}\sigma^2(\partial_\mu\phi)^2$: it produces a coupling $\frac{\dot\phi_0}{\Lambda^2}\sigma^2\delta\phi'$ and a mass $\frac{\dot\phi_0^2}{\Lambda^2}\sigma^2$
- A large vertex prefers a low cutoff Λ but a not-too-large mass prefers the opposite
- For an enumeration of all "simple" couplings that could or could not easily produce large signals, see [Wang, ZX, 1910.12876]

Example: (A refined version of) quasi-single-field inflation

- Quasi-single-field inflation: the earliest CC model, a single heavy scalar [Chen, Wang, 0911.3380]
- A refined version [Wang, ZX, 1910.12876]:

$$\mathscr{L} = \underbrace{-\frac{1}{2}(\partial_{\mu}\phi)^{2} - V(\phi)}_{\text{Inflaton sector}} - \underbrace{\frac{1}{2}(\partial_{\mu}\sigma)^{2} - \frac{1}{2}\mu^{2}\sigma^{2} - \lambda\sigma^{4}}_{\text{Heavy scalar}} - \frac{1}{\Lambda^{2}}\sigma^{2}(\partial_{\mu}\phi)^{2}$$

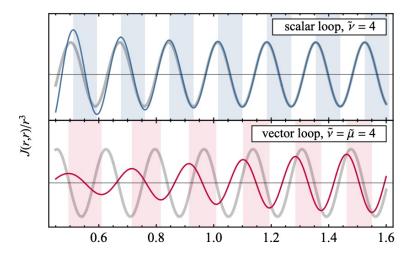

- The dim-6 coupling gives a wrong-sign mass term to σ : $\frac{\dot{\phi}_0^2}{\Lambda^2}\sigma^2$
- σ picks up a vev, which further induces a 2pt mixing: $\frac{\sigma_0\dot{\phi}_0}{\Lambda^2}\sigma\delta\phi'$ so we have a 3pt function with triple σ -exchanges
- Applying our simple formula for an estimate, we get: $B \sim \lambda^{-1} (2\pi)^2 P_\zeta$
- So we get a large signal if λ is small [technically natural]

More examples

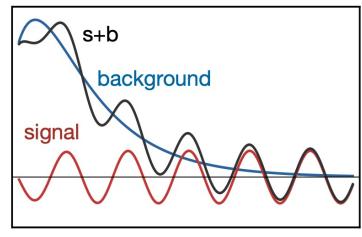
 Axion couplings [Wang, ZX, 1910.12876, 2004.02887] Boltzmann factors $e^{-\pi m}$ are annoying! – Within the vanilla SFSR models, the suppression is naturally relieved by axion couplings:

$$\frac{1}{\Lambda}(\partial_{\mu}\phi)J_{5}^{\mu} \longrightarrow \frac{\dot{\phi}_{0}}{\Lambda}J_{5}^{0}$$

Different external states: cosmo Higgs collider [Lu, Wang, ZX, 1907.07390] cosmo graviton collider [Tong, ZX, 2203.06349] DM/axion isocurvature collider [Lu 2103.05958, etc]



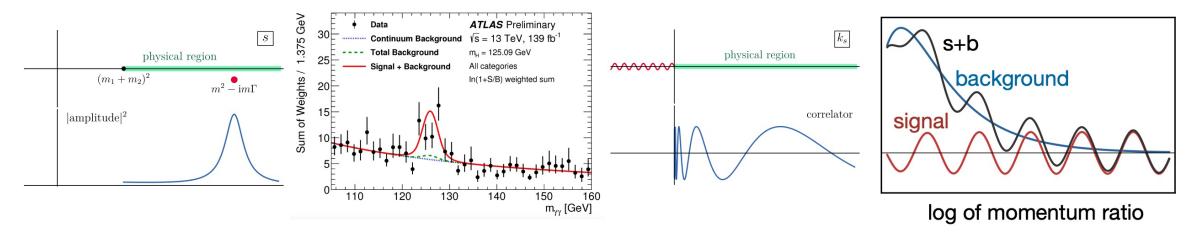
Wang, ZX, 1910.12876


 More BSM new phyics: GUT with extra dim [Kumar, Sundrum: 1811.11200] Neutrino seesaw and leptogenesis [Chen, Wang, ZX, 1805.02656, Cui, ZX, 2112.10793] Flavor [Pinol et al., 2112.05710], BCS phase transition [Tong, Wang, Zhang, Zhu, 2304.09428] Parity violation [Liu, Tong, Wang, ZX, 1909.01819]

Full shape: QFT correlators in dS

- The signal is sinusoidal only in the squeezed limit Also, there are background contributions.
- For real signal searches, the full shape is important.
- Correlators are equal-time expectation values, not scattering amplitudes!
- A standard method: Schwinger-Keldysh path integrals New features: 1) field number doubled; 2) space-time treated separately; 3) modes in special functions
- For a pedagogical introduction to the SK path integral, Feynman rules for correlators, and numerical strategies, see [Chen, Wang, ZX, 1703.10166]
 Numerical packages for tree graphs also available [Werth, Pinol, Renaux-Petel, 2302.00655]

Qin, ZX, 2205.01692


log of momentum ratio

Full shape: QFT correlators in dS

- Analytical frontier: many unexpected progress in recent years, an exciting new direction
- Full shapes for single exchange solved in 2018 [Arkani-Hamed et al. 1811.00024], double exchange in 2023 [ZX, Zang, 2309.10849, Aoki et al., 2404.09547]
- Arbitrary massive tree graphs finally solved in 2024 [Liu, ZX, 2412.07843]
 The full shape has to be high-transcendental-weight hypergeometric functions: identified, expanded, and anlytically continued
- Simple loops computable w/ spectral or dispersion techniques
 [ZX, Zhang, 2211.03810; Liu, Qin, ZX, 2407.12299]
- As a model builder, probably you only need the explicit results, without diving into all the amplitude techniques. Then you could find:
 Full expressions for 3-point tree graphs of sufficient generality in [Qin, ZX, 2301.07047], 4-point tree graphs in [Qin, ZX, 2208.13790], and 1-loop signals in [Qin, ZX, 2205.01692, 2304.13295]

Signal extraction

The signal is intimately related to the (non)analytic properties of amplitudes:

• For CC: (nonlocal) signals in arbitrary correlators factorize in the soft limits => Factorization theorems & cutting rules => signals analytically computable to all loop orders [Qin, ZX, 2304.13295; 2308.14802]

$$=\sum_{\mathsf{c}_1,\cdots,\mathsf{c}_D} = \sum_{\mathsf{ic}_1\widetilde{\nu}_1 \cdots \mathsf{ic}_D} \times \sum_{\mathsf{ic}_D\widetilde{\nu}_D} \times \sum_{\mathsf{ic}_D\widetilde$$

Summary

Data are coming: a new window to particle physics at the inflation scale

Signals manifest as oscillations in the correlation functions: quite different from S-matrix
 Easy to estimate, hard to get the full shape, but we have done most of hard works for you!

• Not trivial but not impossible to get large signals from arbitrary new physics models There are fun challenges for you model builders. We believe in your ingenuity!

Thank you!