

Exploring the elliptic anisotropy of heavy flavors in small collision systems at LHC

Siyu Tang (汤思宇) Wuhan Textile University (武汉纺织大学)

Based on: *Phys.Lett.B* 846 (2023) 138219, *Phys.Rev.C* 109 (2024) 6, 064902, *Nucl. Sci. Tech.* 35 (2024) 2, 32 and ongoing works with:

Chao Zhang (张潮), Ren-zhuo Wan (万仁卓), Guo-liang Ma (马国亮), Zi-wei Lin (林子威)

Hard probes in heavy-ion collisions

Siyu Tang

10⁶

heavy

light

10⁵

Azimuthal anisotropy

Azimuthal anisotropy

Siyu Tang

Puzzles in small collision systems

• Little to no nuclear suppression R_{pA} but a sizable v_2 have been observed for D mesons in p–Pb collisions at the LHC energies

Can the R_{pA} and v_2 be simultaneously described in the small collision systems?

Possible theoretical explanations

+ Coalescence/Fragmentation ...

Siyu Tang

Possible theoretical explanations

Siyu Tang

Parton escaping

- The AMPT calculations with string melting can nicely describe the v_2 and v_3 in p-Pb collisions with a modest elastic cross section ($\sigma = 1.5 3$ mb)
 - \rightarrow Parton escape mechanism is responsible for the anisotropy build up in AMPT

Parton escaping

- The AMPT calculations with string melting can nicely describe the v_2 and v_3 in p-Pb collisions with a modest elastic cross section ($\sigma = 1.5 3$ mb)
 - \rightarrow Parton escape mechanism is responsible for the anisotropy build up in AMPT
 - \rightarrow Parton cascade + coalescence approximately reproduce the NCQ scaling of v_2 at intermediate kE_T

Even for heavy quarks!

A Multi-Phase Transport (AMPT) model

- Initial conditions: HIJING
- **String melting:** hadrons from string fragmentation are melted into primordial quarks and antiquarks
- Parton cascade: two-body elastic scattering described by ZPC model $d\sigma = 9\pi \alpha^2 \left(\mu^2 \lambda \right)$ 1

$$\frac{d\sigma}{dt} = \frac{3\pi\alpha_{\rm s}}{2} \left(1 + \frac{\mu}{s}\right) \frac{1}{\left(t - \mu^2\right)^2}$$

- **Coalescence:** combine nearest quarks to meson/baryon
- A Relativistic Transport (ART) to describe hadron

scatterings

Structure of public AMPT v2.xx (String Melting Version)

Improvements for heavy flavors

HUN THE OUT

- Remove the p0 cut for the HF production
- because the large heavy quark mass naturally control the heavy quark total cross section
- Replace the PDF and nPDF
- modern PDF (CTEQ6.1M) and a spatial dependence of nuclear shadowing functions (eps09s NLO) are incorporated
- Local scaling for self-consistent size dependence
- collision system dependence is introduced in Lund symmetric string fragmentation function (*b*_L) and minijet cutoff (*p*₀)
- Add Cronin effect
- implement the p_T broadening by adding a p_T kick (k_T) in the initial state where k_T is sampled from a two-dimensional Gaussian
- Add independent fragmentation
- according to the relative distance and invariant mass of the heavy hadron system

Siyu Tang

Heavy flavor v_2/R_{pA} at mid-rapidity

• A simultaneous description of the R_{pA} and v_2 is provided by the improved AMPT model

- The Cronin effect significantly enhances D^0 production at intermediate/high p_T , while modestly decrease the D^0 meson v_2
- Parton scatterings are mostly responsible for generating the D^0 meson v_2

Heavy flavor spectrum at forward/backward rapidity

- The D⁰ meson spectrum at forward and backward can be well reproduced by the improved AMPT model
- The Cronin strength is quantified in different rapidity

Heavy flavor spectrum at forward/backward rapidity

- The D⁰ meson spectrum at forward and backward can be well reproduced by the improved AMPT model
- The Cronin strength is quantified in different rapidity

Heavy flavor spectrum at forward/backward rapidity

- "w/o shadowing effect": enhancement is observed, more significantly at forward rapidity
- " $\sigma_{\rm HF} = 0 \text{ mb} / \sigma_{\rm LF} = 0 \text{ mb}$ ": push more particles to higher $p_{\rm T}$ (> 2 GeV/c), but more significantly at backward rapidity

Heavy flavor v₂ at forward/backward rapidity

- Higher v_2 of D⁰ for Pb-going side than p-going side is obtained in a wide p_T range, which may result from decorrelations of event planes at different rapidity
- Consistent v_2 of charm mesons (D⁰, D⁺, D_s) is obtained and baryon-meson grouping for charm hadrons is observed for $p_T > 3 \text{ GeV}/c$ Need to be further constrained by data!

Heavy flavor v₂ at forward/backward rapidity

• The muons from meson decay are obtained using PYTHIA decayer

•A reasonable agreement with the data at forward and backward rapidities is provided by the improved AMPT model

Summary & Outlook

- Systematic calculations of the charm hadron v₂ are perform in p–Pb collisions with **an improved multiphase transport model**
 - Including a strong Cronin effect allows a simultaneous description of the D⁰ spectrum and v_2
 - The parton scatterings generate a significant v_2 for charm mesons, and well reproduce the rapidity dependence observed in data
 - Future studies for bottom hadron/heavy quarkonium in the AMPT?

Modern PDF and nPDFs

- Duke-Owens: used in the published AMPT model. Outdated;
- Modern PDF(CTEQ6.1M): gluon and quark distribution are much higher than Duke-Owens parameterization. important for LHC energies

- A spatial dependence of nuclear shadowing functions(eps09s NLO) is incorporated in the AMPT model.
- Energy dependence of the momentum cutoff p0 and soft cross-section σ_{soft} are needed for the pp collisions.
- A larger value of p_0 is needed for the AA collisions than pp collisions. related to $Q_s \propto A^{1/6}$ Chao Zhang et al. PRC (2019)

Improved multi-phase transport model for heavy flavors

 $gg \rightarrow gg$ cross section in leading-order pQCD is $\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}$ so HIJING uses a minijet cutoff p₀ for minijets (of ALL flavors).

But heavy flavor (HF) production does not need a cutoff due to heavy quark mass $>> \Lambda_{QCD}$ (e.g. in FONLL)

$$g + g \rightarrow Q + \bar{Q}$$
 $q + \bar{q} \rightarrow Q + \bar{Q}$

- So we remove the p_0 cut on HF productions Zheng et al. PRC (2020) in the two-component model HIJING (initial condition for AMPT)
- Unlike HIJING, we include HF in σ_{jet} : $\sigma_{jet} = \sigma_{jet}^{LF} + \sigma^{HF}$
- We also correct factor of $\frac{1}{2}$ in certain σ_{jet} channels

Improved multi-phase transport model for heavy flavors

Zheng et al. PRC (2020)

- Older/public AMPT charm yield << data
- Removing p_0 in HF production greatly enhances charm yield
- This AMPT model well describes world data on total $C\bar{C}$ cross section

Local scaling for self-consistent size dependence in AMPT Lund symmetric string fragmentation function: $f(z) \propto z^{-1}(1-z)^{a_L} e^{-b_L m_T^2/z}$

 b_L typical values (in 1/GeV²):

~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe ZWL, PRC (2014) the bulk matter at high energy AA collisions. This corresponds to a much higher string tension:

$$\langle p_T^2 \rangle \propto \kappa \propto \frac{1}{b_L(2+a_L)}$$
 ZWL et al. PRC (2005)

pp and AA collisions need different values of \mathbf{b}_{L} ; same for Chao Zhang et al. PRC (2019) minijet cutoff \mathbf{p}_0 (for modern PDFs, is related to $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

 \rightarrow We scale them with local nuclear thickness functions:

$$b_{L}(s_{A}, s_{B}, s) = \frac{b_{L}^{pp}}{[\sqrt{T_{A}(s_{A})T_{B}(s_{B})}/T_{p}]^{\beta(s)}}$$

$$p_{0}(s_{A}, s_{B}, s) = p_{0}^{pp}(s)[\sqrt{T_{A}(s_{A})T_{B}(s_{B})}/T_{p}]^{\alpha(s)}$$

Chao Zhang et al. PRC (2021)

We fit charged hadron $\langle p_T \rangle$ in *pp* to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy

Local scaling for self-consistent size dependence in AMPT The scaling allows AMPT to self-consistently describe the system size dependence,

More on the Cronin effect

Often considered as transverse momentum broadening
of a produced parton from a hard process due toKopeli
Kharzemultiple scatterings of initial parton(s) in the nucleusVitev of
A commentation

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the k_T width as $w = w_0 \sqrt{1 + (n_{coll} - i)\delta}$

grows with n_{coll} : # of NN collisions of the wounded nucleon(s), i=1 for $C\bar{C}$ produced from the radiation of 1 wounded nucleon, =2 for $C\bar{C}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35~{
m GeV}/c)~\sqrt{b_{
m L}^0(2+a_{
m L}^0)/b_{
m L}/(2+a_{
m L})}$$
 \propto K

motivated by $\kappa \propto \frac{1}{b_{\rm L}(2+a_{\rm L})}$ for Lund string fragmentation.

• For comparison, $\langle k_T^2 \rangle$ (in GeV²) at 5.02TeV for minimum-bias collisions: Our value HVQMNR Vogt, PRC (2021) pp 0.04 1.46 p-Pb 3.27 2.50

Our extra broadening (p-Pb relative topp) is stronger than HVQMNR; further checks are needed (e.g. from J/ψ or Λ spectra).

•Higher v_2 of D⁰ for Pb-going side than p-going side is obtained in a wide p_T range, which may result from decorrelations of event planes at different rapidity

Siyu Tang

- Predictions for v₂ of charm mesons and baryons are provided
- Consistent v_2 of charm mesons (D⁰, D⁺, D_s) is obtained, which are lower than the light meson v_2 \checkmark similar findings at the mid-rapidity
- Baryon-meson grouping for charm hadrons is observed for $p_T > 3 \text{ GeV}/c$