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Introduction

Nonequilibrium is inevitable in HIC

(1) Initial states

(2) Critical slowing down

due to finite evolution time: ≈20 fm/c

𝜏 ∝ 𝜉%

J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005).
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high cumulants of conserved charges, e.g. 𝑆𝜎

S. Mukherjee, R. Venugopalan and Y. Yin, Phys. Rev.C 92, 034912 (2015).
M. Asakawa, S. Ejiri, and M. Kitazawa, Phys.Rev.Lett. 103,262301 (2009)
S. Wu, Z. Wu and H. Song, Phys. Rev. C 99, 064902 (2019).
K. Rajagopal, G. Ridgway, R. Weller and Y. Yin, Phys.Rev. D 102, 094025 (2020).
J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021).

K3>0

sign change of 𝑆𝜎

SWAGATO MUKHERJEE, RAJU VENUGOPALAN, AND YI YIN PHYSICAL REVIEW C 92, 034912 (2015)
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FIG. 2. (Color online) (a) The evolution of nonequilibrium mean
M/MA, (b) effective correlation length ξ/ξmin, (c) skewness S/SA,
and (d) kurtosis K/KA as a function of (Tc − T )/"T along trajectory
A (cf. Fig. 1). Results for τrel/τI = 0.005, 0.02, 0.05, 0.2 are shown
in solid red, dotted blue, single-dot-dashed green, and double-dot-
dashed orange curves, respectively. The dashed curves plot the
corresponding equilibrium values. All results are normalized by the
corresponding equilibrium value at the endpoint trajectory A (cf.
Fig. 1). The dashed vertical lines illustrate T at the point where the
a freeze-out curve intersects with trajectory A. (From left to right,
freeze-out curves are of type I, II, III, respectively. For a discussion,
see text in Sec. IV B.)

all τrel under consideration are smaller than the equilibrium
value. On the other hand, memory effects of the critical regime
are preserved more efficiently than if the system were in
equilibrium throughout. One observes that, when T is below
Tc, the nonequilibrium value of ξ at that temperature is larger
than the equilibrium value. Similar observations were made
previously in Ref. [24].

Turning now to the evolution of the non-Gaussian cumu-
lants S and K , we first recall that, in equilibrium κ

eq
3 , or

equivalently Seq, is an odd function of the Ising variable h.
It will therefore flip sign when crossing the crossover line, as
demonstrated by the dashed curve in Fig. 2(c). In contrast,
κ

eq
4 or Keq is an even function of the Ising variable h. It is

negative at the crossover temperature and positive away from
it as shown by the corresponding dashed curve in Fig. 2(d).
However, we demonstrate in Fig. 2 that the nonequilibrium
evolution of skewness and kurtosis do not necessarily follow
the evolution of the corresponding equilibrium cumulants and
can be radically different in both their magnitude and sign.

These differences occur because, as previously noted, the
evolution of higher cumulants is coupled to the lower ones.
Therefore, how K (or S) evolve will not only depend on
its deviation from the equilibrium value, but also on the
nonequilibrium values of other cumulants. As we shall discuss
shortly, these deviations off equilibrium have significant
phenomenological implications for the search for a critical
point in a beam-energy scan. Specifically, in Fig. 2, the dashed
vertical lines correspond to freeze-out trajectories I, II, and III
(left to right), which provide snapshots of the nonequilibrium
cumulants that may be measured in experiments. We shall
return to a more detailed discussion of these in Sec. IV B.

IV. TOWARD MODELING THE RHIC
BEAM-ENERGY SCAN

The results we presented for the non-Gaussian cumulants
off equilibrium potentially strongly impact the interpretation
of the results of ongoing and future critical-point searches
with the beam-energy scan (BES) at RHIC. To further explore
these, we solve the evolution equation for fixed-µ trajectories
broadly spanning the critical regime. In our simple model, this
would be the equivalent of varying

√
s. We will then be able

to compute the nonequilibrium cumulants for a given τrel/τI

for every point in the critical regime.

A. Memory effects and the sign of nonequilibrium
skewness and kurtosis

In Figs. 3 and 4 we present contour plots for the equilibrium
and nonequilibrium skewness S and kurtosis K , respectively.
Due to memory effects, the nonequilibrium contours in the T -µ
plane deform from the corresponding equilibrium contours;
the deformation is enhanced for larger relaxation times τrel/τI .

We now focus on the sign of the skewness and kurtosis,
their most prominent feature. We illustrate it by plotting the
regime S > 0 (or K > 0) in red and S < 0 (or K < 0) in blue.
In equilibrium, the boundary that separates the regime where
S > 0 and S < 0 is precisely the crossover line at T = Tc. In
Fig. 3, we fix the sign of the equilibrium skewness in such a way

034912-8

nonequilibrium evolution?

Critical sensitive observables: 
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Current Status:

• Relaxational models, e.g. Fokker-Planck equation

S. Wu, Z. Wu and H. Song, Phys. Rev. C 99, 064902 (2019).
Lijia Jiang, Jingyi Chao, Eur. Phys. J. A 59, 30 (2023). 

S. Mukherjee, R. Venugopalan and Y. Yin, Phys. Rev.C 92, 034912 (2015).

l No ready nonequilibrium statistics

l Current analytical methods – dynamical models

Belong to dynamic universality class “model A”

Limited to crossover, then extended to 1st-PT

• Langevin dynamics
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Relaxation time: 

l Autocorrelation time

l Equilibrium time: the magnetization reach stable value 

Tc

Tc T ≪ Tc

N = L3 L

J
H

E{si} = −J
∑

⟨ij⟩

sisj −H
N∑

i=1

si, si = ±1,

si i

m =
1

N

N∑

i=1

si.

Tc = 4.51
Tc H = 0

A(uuu → vvv)

A(uuu → vvv) =

{
e−(Evvv−Euuu)/kBT Evvv − Euuu > 0,
1

uuu vvv
A(uuu → vvv) = 1

A(uuu → vvv) < 1 r 0 < r <
1 A(uuu → vvv) > r

N

t

µ σ

(µ− σ, µ+ σ)

τeq

τ̄eq

τ̄eq =
1

N

N∑

j=1

τ jeq,

N

χ(t) =

∫
[m(t′)− ⟨m⟩] [m(t′ + t)− ⟨m⟩] dt′.

t

L = 60

χ(t) ∼ e−t/τauto .

χ(t)/χ(0)
1/e τauto

τ̄auto

m
m

T H L = 60

H = 0

Tc = 4.51

H = 0

T/Tc = 1.00
L

Tc

Tc

T/Tc ≈ 0.98

Tc

T ≪ Tc

T/Tc

Tc

τ̄eq ∼ Lz.

T/Tc ≈ 0.98
Tc T/Tc < 0.98

L = 40
T = 4.51 L = 20

Tc

Tc

Tc

Tc z = 2.000 ± 0.012
z =

2.06± 0.03

Tc T = 4.2

z = 3.757 ± 0.057
Tc

Tc

Tc

Tc

Tc

equilibrium evolution (from an equilibrium to another equilibrium)

nonequilibrium evolution (from an initial state to an equilibrium)

Autocorrelation function 

Studies on equilibration time remain limited. 
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MC of 3D Ising model by Metropolis algorithm

l Why MC simulation?
• Closer to real HIC experiments

• The same static universality class with the QCD CP
l Why 3D Ising model?

• The relaxation processes can be easily realized on the entire 
phase boundary

Tc

H

T
1st-PT Crossover
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l Why Metropolis algorithm? 
• Single spin-flipping dynamics, a local dynamics 

of Glauber type
N. Menyhard and G. Odor, Brazilian Journal of Physics 30, 113 (2000). 

• Suitable for studying evolutions from 
nonequilibrium to equilibrium
Phys. Rev. B 89, 054307 (2014) .   Phys. Rev. E 56, 2407 (1997).

• Belong to dynamic universality class “model A”
Phys. Rev. E 101, 022126 (2020).

• Swendsen-Wang algorithm or Wolff algorithm, cluster algorithm, 
suitable for equilibrium properties
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3D Ising model

(order parameter)

Constant nearest-neighbor interactions 𝐽
Uniform external field 𝐻

Partition function

Per-spin magnetization

𝐸{,-} = −𝐽1𝑠3𝑠4
34

− 𝐻1𝑠3

5

367

𝑍(𝑇, 𝐻) = 1exp	(−𝐸 ,- /𝑘C𝑇)
{,-}

𝑚 =
1
𝑁
1𝑠3

5

367 Tc

H

T
1st-PT Crossover

𝑇G = 4.51

𝑠3 = +1, −1
𝑁 = 𝐿M
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Metropolis algorithm

Acceptance probability 𝐴 𝒖 → 𝒗 ,  

𝐴 𝒖 → 𝒗 = Rexp −
𝐸𝒗 − 𝐸𝒖
𝑘C𝑇

			if		𝐸𝒗 > 𝐸𝒖
1					otherwise.

an increasing function of 𝑇

Time 𝑡 is defined as the number of sweeps.

• Initial configuration

• Test a spin for flipping (a Monte Carlo step)

• Every spin in the lattice has been tested (one sweep)
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Evolution of order parameter

• Difference in 𝜏]^ is significant at low 
temperature

a    b           d

𝑇/𝑇G = 0.93 𝑇/𝑇G = 0.99 𝑇/𝑇G = 1.00 𝑇/𝑇G = 1.03

(a)           (b)       (c)         (d)

𝑚

𝑡
𝑚
𝑡

𝑚

𝑡

𝑚

𝑡

𝜏]^: the equilibration time

Xiaobing Li, Mingmei Xu, Yanhua Zhang, Zhiming Li, Yu Zhou, Jinghua Fu, Yuanfang Wu, Phys. 
Rev. C 105, 064904 (2022).

• Random initial config.
Tc

H

T
1st-PT Crossover

𝜏]^ 𝜏]^
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Distribution	of	equilibration	time 𝝉𝒆𝒒

• At 𝑇 > 𝑇G , the width of the distribution is the smallest.
• At 𝑇G , the distribution gets wide. 
• At 𝑇 < 𝑇G , the distribution has a long tail.

𝑇/𝑇G = 0.93 𝑇/𝑇G = 0.99 𝑇/𝑇G = 1.00 𝑇/𝑇G = 1.03

𝜏]^

𝑃(
𝜏 ]
^
)

𝑃(
𝜏 ]
^
)

𝑃(
𝜏 ]
^
)

𝑃(
𝜏 ]
^
)

𝜏]^ 𝜏]^ 𝜏]^

LI, XU, ZHANG, LI, ZHOU, FU, AND WU PHYSICAL REVIEW C 105, 064904 (2022)

an equilibrium state, and the approaching to the steady value
represents the relaxation to equilibrium.

We use µ to denote the steady value, i.e., the equilib-
rium expectation. When the difference with the equilibrium
expectation is considerably larger than the root of the vari-
ance at equilibrium σ = ⟨(x − µ)2⟩1/2, the system is far from
equilibrium.

The period of time from nonequilibrium to equilibrium is
called the relaxation time [32,33]. In our simulation, relax-
ation time of the ith evolution process τ i

eq is estimated by the
time when the value of |m| enters the interval (µ − σ , µ + σ ),
i.e., the band of thermal fluctuations around the equilibrium
expectation.

Relaxation time of the ith process defined above represents
the number of iterations needed to achieve equilibrium. One
iteration is counted after each of the spins is examined to flip
or not by given dynamics. We count the number of iterations,
which is an integer. The number of iterations presents the
steps, i.e., time, that the system needs to achieve equilibrium.

In Fig. 1(a) the steady values of the red curve and the blue
curve are the same, but relaxation time of the red curve is
much longer than the blue curve. The difference of relaxation
time between the red curve and the blue curve is significant at
low temperature as Fig. 1(a) shows and seems diminishing at
high temperature as Figs. 1(b)–1(d) shows. In order to show
the difference of relaxation time of different evolution pro-
cesses, the distributions of τeq are plotted in Figs. 1(e)–1(h).
For the sake of comparison, the horizontal ordinate of the four
figures are set to the same.

At the temperature T/Tc = 0.93, the distribution of τeq
has a long tail, as shown in Fig. 1(e). The long tail means
there are a fraction of evolution processes whose relaxation
time is very long. When the temperature gets closer to Tc, the
distribution gets narrow, as shown in Fig. 1(f). At the critical
temperature, the distribution gets wide again, as Fig. 1(g)
shows. The number of systems with a long relaxation time
increases at the critical temperature. On the crossover side,
i.e., T/Tc = 1.03, the width of the distribution is the smallest
and the distribution is concentrated at very short relaxation
time, as Fig. 1(h) shows.

To quantify the relaxation time of different evolution pro-
cesses, we define the average relaxation time as

τ̄eq = 1
n

n∑

i=1

τ i
eq, (8)

where n is the total number of evolution processes, τ i
eq is relax-

ation time of the ith evolution process. At τ̄eq, not all systems
are at equilibrium. There is still a proportion of systems in
nonequilibrium state. τ̄eq should represent the relaxation time
τ

dyn
eq in dynamical equations.

Generally, the relaxation time depends on the mechanism
of dynamic process, the system size, temperature, initial con-
figurations, and so on. In Fig. 2 we systematically illustrate
how the average relaxation time varies with temperature, the
system size and the initial configuration.

As Fig. 2(a) shows, in the neighborhood of Tc, the average
relaxation time has a peak which increases with the system

FIG. 2. Average relaxation time τ̄eq as a function of temperature
(a) at system sizes L = 50 (blue circles) and 60 (red squares) starting
from random initial configuration; (b) for random initial configura-
tions (red squares) and polarized initial configurations (blue circles)
at a fixed system size L = 60.

size. Figure 2(b) also shows peaks around the critical temper-
ature no matter what initial configuration is.

Due to a critical slowing down, the relaxation time near Tc
for an infinite system size is expected to diverge as [27]

τ dyn
eq ∝ ξ z ∝ |T − Tc|−zν, (9)

where ν is the critical exponent of correlation length. z is the
dynamic exponent, which governs the dynamic universality
class [34]. For a finite system size, ξ ∼ L, Eq. (9) reads

τ dyn
eq ∝ Lz. (10)

This gives the power-law behavior of the relaxation time at Tc.
In order to test the power-law behavior of τ̄eq, the log-log

plot of τ̄eq versus system size is presented in Fig. 3. Its linear
region is well fitted by a straight line with slope equal to
2.06 ± 0.03, consistent with Refs. [32,35,36]. τ̄eq of critical
temperature indeed diverges as the z-th power of system size,
the same as τ

dyn
eq .

We also examine the dependence of the standard error
and the relative standard error of τ eq on system size. The
standard error increases with system size, and the relative
standard error is almost constant. This indicates a violation of
self-averaging at the critical temperature [37]. The violation of
self-averaging appears to be a common property at criticality.

FIG. 3. The finite size scaling of average relaxation time at criti-
cal temperature. The straight line is a linear fit.

064904-4

Define the average equilibration time as

(a)       (b)                      (c)                    (d)
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𝜏̅]^ near the entire phase boundary

𝜏̅]^ near the 1st-PTL ≫ 𝜏̅]^ near the CP 

2

The spins also interact with an external magnetic field
H. The total energy of a system of N spins with a con-
stant nearest-neighbor interaction J placed in a uniform
external field H is

E{si} = �J
X

hiji

sisj �H
NX

i=1

si, (1)

where the notation hiji restricts the sum to run over all
the nearest neighbor spins. The per-spin magnetization
is

m =
1

N

NX

i=1

si. (2)

At low temperature, there is an ordered phase where
|m| is close to unity. At high temperature, there is a
disordered phase where |m| is close to zero. A phase
transition from a high-temperature disordered phase to
a low-temperature ordered phase is anticipated which is
continuous and called the Curie point, i.e. the critical
point.

Metropolis algorithm [29], as a special case of Glauber
dynamics [23], is suitable for studying nonequilibrium
evolution [30, 31]. Starting from an initial configuration,
Metropolis algorithm flips one single spin at each step
during the evolution. Whether a spin flips depends on
the acceptance probability A(uuu ! vvv), which is given by

A(uuu ! vvv) =

⇢
e�(Evvv�Euuu)/kBT if Evvv � Euuu > 0,
1 otherwise.

(3)

uuu and vvv represent the state of the system before and after
flipping this spin. If A(uuu ! vvv) = 1, the spin is flipped.
If A(uuu ! vvv) < 1, a random number r (0 < r < 1) is gen-
erated. If A(uuu ! vvv) > r, the spin is flipped, otherwise,
the spin keeps its original state. The testing of one single
spin is called a Monte Carlo step. When N Monte Carlo
steps are completed, every spin in the lattice has been
tested for flipping and one sweep is completed. In this
way, the configuration of the system is updated once a
sweep. After evolving enough sweeps, the magnetization
approaches a steady value and the system reaches equi-
librium. Relaxation time of a process is defined by the
number of sweeps required for magnetization to reach a
stable value [26].

To quantify the RT of a sample, the average RT is
suggested as [26],

⌧̄ =
1

n

nX

i=1

⌧ i, (4)

where n is the total number of evolution processes, ⌧ i is
RT of the ith process.

For a fixed system size L = 60, starting from random
configurations, the contour plot of average RT ⌧̄ on T -H
plane is presented in Fig. 1. The color code goes from

FIG. 1: Countour plot of averaged relaxation time ⌧̄ on the
phase plane of 3D Ising model for system size L = 60.

white, red to black, displaying the average RT ranging
from a few to more than four thousands.
The phase boundary of the 3D Ising model is composed

of the 1st-PTL at H = 0 with T < 4.51 and the CP at
Tc = 4.51 [32]. Figure 1 shows that light colored area
which represents very short RT is far from the phase
boundary. A dark-red point appears around Tc = 4.51.
This clearly shows the critical slowing down as expected.
Along the 1st-PTL, from high to low temperature,

the color becomes increasingly dark and then completely
black when temperature is below 4.2, indicating a fast in-
crease of average RT. On the low temperature side, along
the direction of external field from H 6= 0 to H = 0, the
colour changes rapidly to black near H = 0. This shows
that the relaxation near the 1st-PTL is much more slug-
gish than that near the CP, i.e. ultra-slowing down.
Ultra-slowing down implies a much bigger uncertainty

and randomness. This is understandable as the structure
of the free energy at the 1st-PT is more complex than
that at the CP. The 1st-PTL represents a change of in-
ternal states. The upward and the downward magnetized
phase coexist on the line. The equilibrium state could be
either upward or downward magnetized state, with equal
probability. The number of possible states is doubled.
Near the 1st-PTL, some of the possible states appear in
the form of metastable states as displayed by the so called
spinodal curve [20]. The appearances of coexisting and
metastable states greatly increase the instabability, the
uncertainty and randomness at equilibrium state. Much
bigger randomness leads to a much longer RT. So the
equilibrium of the 1st-PT is very di�cult to achieve.
In order to see how the average RT changes with sys-

tem size, double-log plot of average RT ⌧̄ versus system
size L for three temperatures at the boundary H = 0
and nearby region H 6= 0 are presented in Fig. 2(a) and
Fig. 3(a), respectively. Three values of temperature in
Fig. 2 are Tc = 4.51 (red squares), two below Tc (blue
circles and purple triangles), respectively. Bars represent
statistical errors.
At the CP (red squares) and two typical points at the

Xiaobing Li, Ranran Guo, Mingmei Xu, Jinghua Fu, Lizhu Chen, Yu Zhou, Yuanfang Wu, arXiv:2412.18909.

Ultra-slowing relaxation on the 1st-PTL !
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Characteristics of nonequilibrium evolution

(1) 𝜏̅]^ shows a decreasing trend with 
𝑇: the acceptance probability is an 
increasing function of 𝑇.

(2) For 𝑇 > 𝑇G , 𝜏̅]^ is short.

For 𝑇 < 𝑇G , 𝜏̅]^ is large.

(4) Near 𝑇G and 𝑇 ≪ 𝑇G
strong dependences on system size

L

Tc z = 1.710 ± 0.010

Tc Tc T = 4.20

T = 4.20 Tc

H = 10−5 z =
3.763± 0.057 z = 3.757± 0.057

H
z

H = 0.02

Tc τ̄eq
τ̄eq

Tc

∂F
∂m T < Tc H = 0

m

∂F
∂m m = 0

∂F
∂m = 0
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The dynamic scaling of 𝜏̅]^ on the entire phase boundary

Ultra-slowing relaxation on the 1st-PTL !

𝜏̅]^ ∼ 𝐿%

L

Tc z = 1.710 ± 0.010

Tc Tc T = 4.20

T = 4.20 Tc

H = 10−5 z =
3.763± 0.057 z = 3.757± 0.057

H
z

H = 0.02

Tc τ̄eq
τ̄eq

Tc

∂F
∂m T < Tc H = 0

m

∂F
∂m m = 0

∂F
∂m = 0

Ø At 𝑇G , critical slowing down

Ø 𝜏̅]^ is equivalent to 𝜏]^
klm , the same 

size scaling 

Ø Power law also holds at 1st-PTL

No such scaling for auto-corr. time!

Ø 𝑧	on the 1st-PTL > 𝑧 at CP 

= 0.93
0.99
1.00
1.02

𝑇G
𝑇

The dynamic exponent 𝑧 is consistent 
with model A (𝑧 = 2.0245).
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Tc L = 50
T > Tc

T < Tc Tc

H = 0

m = 0
∂F
∂m = 0

Tc L = 50
T > Tc

T < Tc Tc

H = 0

m = 0
∂F
∂m = 0

No size scaling for auto-correlation time at 1st-PT. 
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The dynamic scaling of 𝜏̅]^ near the 1st-PTL

τ̄eq τ̄auto

τ̄auto

τ̄eq

T > Tc

T < Tc

|T−Tc
Tc

| ≈ 0.1

Tc

L = 20 z =
2.029 ± 0.006

z

Tc

Tc

Tc Tc

Tc z = 3.757 ± 0.057 T = 4.2
Tc z = 2.000 ± 0.012

H = 0

m = 0
∂F
∂m = 0

Ultra-slowing relaxation near the 1st-PTL !

𝑇/𝑇G = 0.93

Approaching the 1st-PTL, the 
value of 𝑧 increases.
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Ultra-slowing relaxation understood through the 
perspective of free energy

𝜕𝐹
𝜕𝑚 = 0An equilibrium state:

If this condition is not satisfied, the relaxation rate: 
𝑑𝑚
𝑑𝑡 = −𝛾

𝜕𝐹
𝜕𝑚

phase 1 phase 2

located at the barrier top tutv = 0

relax extremely slowly 

random initial config.

The free energy landscape at lower 
temperatures, see poster ID 172 by Ranran
Guo.
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Influences of nonequilibrium evolution on observables

the mean
the variance
~ the skewness
~ the kurtosis

𝐶7 = 𝑋
𝐶y = 𝛿𝑋 y

𝐶M = 𝛿𝑋 M

𝐶{ = 𝛿𝑋 { − 3 𝛿𝑋 y y

where 𝑋 = 𝑚 ,𝛿𝑋 = 𝑚 − 𝑚

Corresponding observables in Ising
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Time evolution of cumulants of order parameter near CP

• 𝐶7: a similar trend with Langevin dynamics 

𝑇/𝑇G = 0.99

𝑇/𝑇G = 1.01

𝐶7 𝐶y 𝐶M 𝐶{

𝐶7
𝐶y 𝐶M 𝐶{

𝑡 𝑡 𝑡 𝑡

𝑡𝑡𝑡𝑡

(a)                           (b)                             (c)                            (d)

(e)                            (f)                             (g)                            (h)

• 𝐶M and 𝐶{: oscillations and sign changes
consistent with STAR measurement and dynamical 
equations 
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𝑇/𝑇G = 0.99

𝑇/𝑇G = 1.01

𝐶7 𝐶y 𝐶M 𝐶{

𝐶7
𝐶y 𝐶M 𝐶{

𝑡 𝑡 𝑡 𝑡

𝑡𝑡𝑡𝑡

(a)                           (b)                             (c)                            (d)

(e)                            (f)                             (g)                            (h)

• 𝜏̅]^ at 𝑇/𝑇G=0.99 ~ 2𝜏̅]^ at 𝑇/𝑇G=1.01

• The magnitude of 𝐶M: higher by two orders at 𝑇/𝑇G=0.99

Time evolution of cumulants of order parameter near CP

2000

×10~M

4000
×10~�
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Summary and discussions

(1) The trend of the order parameter, consistent with Langevin dynamics 
(2) 𝜏̅]^ ∼ 𝐿% , consistent with critical slowing down 

𝜏̅]^ in numerical simulations  

𝜏]^
klm in dynamical equations

(3) The sign change at T>Tc, consistent with dynamical models and 
STAR measurement.

The MC simulation by Metropolis algorithm is an effective method 
for studying nonequilibrium. 

equivalent
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Summary and discussions

(1) 𝜏̅]^ at 𝑇 < 𝑇G 			≫ 𝜏̅]^ at 𝑇 > 𝑇G
(2) influences at 𝑇 < 𝑇G 			≫ influences  at 𝑇 > 𝑇G

On 1st-PTL, more difficult to achieve equilibrium, and the influence 
of nonequilibrium on observables is much stronger than that at the 
crossover side. 

Nonequilibrium effects near 1st-PTL need more attention!



Thank you！
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