Contribution ID: 14 Type: 口头报告

Kaon superfluidity in the early Universe

Saturday, 26 April 2025 15:05 (20 minutes)

Previously, it was found that pion superfluidity could be realized in the quantum chromodynamics (QCD) epoch of the early Universe, when lepton flavor asymmetry jle \flat lµj is large enough to generate a charge chemical potential jµQj larger than vacuum pion mass. By following the same logic, kaon superfluidity might also be possible when jle \flat lµj is so large that jµQj becomes larger than vacuum kaon mass. Such a possibility is checked by adopting Ginzburg-Landau approximation within the three-flavor Polyakov–Nambu–Jona-Lasinio model. Consider the case with full chemical balance, though kaon superfluidity could be stable compared to the chiral phases with only σ condensations, it would get killed by the more favored homogeneous pion superfluidity. If we introduce mismatch between s and d quarks, kaon superfluidity would require so large s quark density that such a state is impossible in the early Universe.

Primary author: 曹, 高清 (Sen Yat-sen University)

Presenter: 曹, 高清 (Sen Yat-sen University)

Session Classification: 分会场一