Jet momentum reconstruction in the QGP background with machine learning

Based on arXiv:2412.06466 In collaboration with Ran Li (李然) and Shanshan Cao (曹杉杉)

> 杜轶伦 山东高等技术研究院

第二十届全国中高能核物理大会 4月24日-28日,上海

Outline

Simulation Models: PYTHIA & LBT models

Background Subtraction Methods

Set Momentum Reconstruction

✤ Jet Nuclear Modification Factor R_{AA}

QGP and Jet Modifications

- Quark-gluon plasma (QGP) in heavy-ion collisions: deconfined phase, hot dense medium.
- hard probe to medium properties.
- measure the quenching effects.

- Vacuum jets: PYTHIA8 model
- Jet interaction with QGP: Linear Boltzmann Transport (LBT) model
- * Pb-Pb collisions in 0-10% centrality at $\sqrt{S=5.02TeV}$
- QGP background: a toy thermal model
- * Reconstructed jets with anti- k_T , R=0.4
- Target p_T sum of the (PYTHIA/LBT) jet particle p_T within jet cone, in the presence of background particles

Background Subtraction Methods

Area-based method

- Event-by-event basis: background momentum density ρ
- For each jet: reconstructed jet momentum $p_T^{\text{rec}} = p_T^{\text{raw}} - \rho A$
- Leading to large residual fluctuations
- Constituent Subtraction method
 - Local subtraction of soft background
 - Simultaneously correcting the 4-momentum of the jet and its substructures

ML techniques with following PYTHIA jet observables as inputs

The uncorrected jet momentum

- The jet transverse momentum, corrected by the area-based method
- Jet mass, radial moment, momentum dispersion, and LeSub
- The number of constituents within the jet
- Mean and median of all constituent transverse momenta
- The transverse momenta of the first ten leading

R. Haake and C. Loizides, PHYS. REV. C 99, 064904 (2019)

Jet Momentum Reconstruction in ALICE

^{\diamond} More precise estimate for low p_T jet

* PYTHIA & Quenching-aware Variants are employed to train DNNs separately to predict jet p_T and estimate R_{AA}

How about training the datasets together?

Phys. Lett. B 849 (2024) 138412

Jet Momentum Reconstruction

Test PYTHIA-trained ML on different datasets

PYTHIA-trained ML has a prediction bias when applied on LBT jets.

The bias is reduced when the ML model is applied on LBT jets without recoil particles: Recoil particles may be considered as the background.

Jet Momentum Reconstruction

Testing on LBT data

- The bias is reduced when the ML model is trained by LBT jets directly or by LBT+PYTHIA jets.
- ML methods are more accurate than conventional methods (Area-based & Constituent Subtraction).

Testing on PYTHIA data

* LBT+PYTHIA-trained ML can make accurate predictions on PYTHIA and LBT data simultaneously, demonstrating strong robustness.

* R_{AA} from ML(LBT) & ML(LBT+PYTHIA) are closer to that of the current target baseline "LBT jet within bkg." than R_{AA} from ML(PYTHIA).

jets reconstructed within background (LBT jet within bkg.) VS jets reconstructed without background (LBT-only jets).

Significant discrepancy between two baselines, i.e., Experiment vs Theory:

 We apply a matching procedure to reveal the contribution from fake jets and the p_T difference between matched jets.

Jet Momentum Reconstruction

LBT-trained ML with Matching Procedure

* p_T of LBT jets within bkg. are generally larger than p_T of LBT-only jets, leading to an over-estimation of R_{AA}

* ML models are dedicated to predict LBT-only jet p_T from LBT jet within bkg.

 R_{AA} from LBT-only jet can be well reproduced with such ML setups

* By incorporating fake jets and labelling their $p_T = 0$ in the training, the performance will improve

Summary & Outlook

- quenched jets simultaneously to obtain strong robustness and generalizability.
- dedicated to predict the p_T of real target jets in theory from jets reconstructed in experiment.
- Incorporate quenched jets from various MC models.
- Include the realistic anisotropic background and medium response.

To better reconstruct jet momentum with machine leaning, we suggest training the ML model with various

* To more accurately obtain the jet nuclear modification factor R_{AA} in theory, we apply a matching procedure and reveal that the contribution from fake jets is relatively small though non-negligible. ML models are

Develop novel ML models assisted with better jet representation to improve the prediction accuracy.

