Study nucleus structure through spectator particle yield in relativistic heavy-ion collisions

Jun Xu (徐骏)

Tongji University

Main collaborators: Lu-Meng Liu(刘鹿蒙)(Fudan)、Song-Jie -Li(李松桀)(Tongji) Hai-Cheng Wang(王海澄)(Tongji)、 Chun-Jian Zhang(张春健)(Fudan) Jiangyong Jia(贾江涌)(Stony Brook)、Zhong-Zhou Ren(任中洲)(Tongji) Guang-Xiong Peng(彭光雄)(UCAS)、Xu-Guang Huang(黄旭光)(Fudan)

Lu-Meng Liu, Chun-Jian Zhang, Jia Zhou, JX*, Jiangyong Jia*, and Guang-Xiong Peng, Phys. Lett. B 834, 137441 (2022), arXiv: 2203.09924 [nucl-th] Lu-Meng Liu, Chun-Jian Zhang, JX*, Jiangyong Jia*, and Guang-Xiong Peng, Phys. Rev. C 106, 034913 (2022), arXiv: 2209.03106 [nucl-th] Lu-Meng Liu, JX*, and Guang-Xiong Peng, Phys. Lett. B 838, 137701 (2023), arXiv: 2301.07893 [nucl-th] Probing configuration of α clusters with spectator particles in relativistic heavy-ion collisions Lu-Meng Liu, Song-Jie Li, Zhen Wang, JX*, Zhong-Zhou Ren*, and Xu-Guang Huang, Phys. Lett. B 854, 138724 (2024), arXiv: 2312.13572 [nucl-th] Directly probing existence of α -cluster structure in ²⁰Ne by relativistic heavy-ion collisions Lu-Meng Liu, Hai-Cheng Wang, Song-Jie Li, Chun-Jian Zhang, JX*, Zhong-Zhou Ren*, Jiangyong Jia*, and Xu-Guang Huang*, Phys. Rev. C 111, L021901 (2025), arXiv: 2502.08057 [nucl-th]

Content

- Probe nucleus structure
 - Neutron-skin thickness $\Delta r_{np} \sim L$, $\Delta r_{np}(\theta) \sim W_0$
 - α-cluster structure
- Model setup
 - Initial density distribution
 - Glauber model
 - Multifragmentation process

Neutron skin and E_{sym}

Various constraints on $E_{sym}(\rho_0)$ and $L(\rho_0)$

X-ray Bursters

R..., z

Gravity Waves

Mass/Radius

dR/dM

Maximum Mass, Radius

Composition: Hyperons, Deconfined Quarks Kaon/Pion Condensates Pulsars

Masses

Spin Rates

Moments of Inertia

Magnetic Fields

Glitches - Crust

OPO's

Mass

Radius

NS Cooling

Temperature

R., z

Direct Urca

Superfluid Gaps

Symmetry energy PACS: 21.65.Ef

More reliable probes are still needed

probe neutron skin with mid-rapidity observables at RHIC and LHC **Charged-particle multiplicity**

Observables at midrapidities suffer from complicated dynamics and model dependence v_2 and $\langle p_T \rangle$

G. Giacalone, G. Nijs, and W. van der Schee, PRL (2023)

Average $e(x_{\perp}, \tau = 0.6 \text{ fm/c}) \text{ (GeV/fm}^3)$

probe neutron skin with intermediate-energy HIC

Suffer from:

- 1) Model dependence
 - **b)** Interaction between spectator and participant
- 3) Uncertainties of clusterization/multifragmentation

Advantages:

- 1) Spectator matter has almost no interaction with participant matter
- 2) UCC region, free from uncertainties of clusterization/multifragmentation

Model setup: initial density distribution

Skyrme-Hartree-Fock (SHF) model: $v(\vec{r}_1, \vec{r}_2) = t_0(1 + x_0 P_\sigma)\delta(\vec{r})$ + $\frac{1}{2}t_1(1+x_1P_{\sigma})[\vec{k}'^2\delta(\vec{r})+\delta(\vec{r})\vec{k}^2]$ + $t_2(1+x_2P_\sigma)\vec{k}'\cdot\delta(\vec{r})\vec{k}$ + $\frac{1}{6}t_3(1+x_3P_{\sigma})\rho^{\alpha}(\vec{R})\delta(\vec{r})$ + $iW_0(\vec{\sigma}_1 + \vec{\sigma}_2)[\vec{k}' \times \delta(\vec{r})\vec{k}].$

Quantity	MSL0	Quantity	MSL0
$t_0 ({\rm MeV}{\rm fm}^5)$	-2118.06	$\rho_0 ({\rm fm}^{-3})$	0.16
$t_1 ({\rm MeV}{\rm fm}^5)$	395.196	E_0 (MeV)	-16.0
t_2 (MeV fm ⁵)	-63.953 1	K_0 (MeV)	230.0
t_3 (MeV fm ^{3+3σ})	128 57.7	$m_{s,0}^*/m$	0.80
x_0	$-0.070\ 949\ 6$	$m_{v,0}^{*}/m$	0.70
<i>x</i> ₁	$-0.332\ 282$	$E_{\rm sym}(\rho_0) ({\rm MeV})$	30.0
<i>x</i> ₂	1.358 30	L (MeV)	60.0
<i>x</i> ₃	$-0.228\ 181$	G_S (MeV fm ⁵)	132.0
σ	0.235 879	G_V (MeV fm ⁵)	5.0
$W_0 ({ m MeV}{ m fm}^5)$	133.3	$G_0'(ho_0)$	0.42

L.W. Chen, C.M. Ko, **B.A. Li, and JX PRC (2010)**

Pairing interaction

$$V_{\text{pair}}^{(n,p)} = V_0^{(n,p)} \left(1 - \frac{1}{2} \frac{\rho(\vec{r})}{\rho_0} \right) \delta(\vec{r}_1 - \vec{r}_2)$$

Hartree-Fock method:

$$\mathsf{E} = \sum_{i} \left\langle i \left| \frac{p^{2}}{2m} \right| i \right\rangle + \frac{1}{2} \sum_{ij} \left\langle ij \right| \tilde{v}_{12} \left| ij \right\rangle$$

$$\frac{\delta}{\delta \phi_{i}} \left(E - \sum_{i} e_{i} \int |\phi_{i}(\mathbf{\vec{r}})|^{2} d^{3}r \right) = 0$$

$$\left[-\vec{\nabla} \cdot \frac{\hbar^{2}}{2m_{q}^{*}(\mathbf{\vec{r}})} \vec{\nabla} + U_{q}(\mathbf{\vec{r}}) + \vec{W}_{q}(\mathbf{\vec{r}}) \cdot (-i)(\vec{\nabla} \times \vec{\sigma}) \right] \phi_{i} = e_{i} \phi_{i}$$

Hartree-Fock-Bogoliubov method:

$$\int d^{3}\mathbf{r}' \sum_{\sigma'} \begin{pmatrix} h(\mathbf{r}\sigma, \mathbf{r}'\sigma') & \tilde{h}(\mathbf{r}\sigma, \mathbf{r}'\sigma') \\ \tilde{h}(\mathbf{r}\sigma, \mathbf{r}'\sigma') & -h(\mathbf{r}\sigma, \mathbf{r}'\sigma') \end{pmatrix} \begin{pmatrix} \varphi_{1}(E, \mathbf{r}'\sigma') \\ \varphi_{2}(E, \mathbf{r}'\sigma') \end{pmatrix} \\ = \begin{pmatrix} E + \lambda & 0 \\ 0 & E - \lambda \end{pmatrix} \begin{pmatrix} \varphi_{1}(E, \mathbf{r}\sigma) \\ \varphi_{2}(E, \mathbf{r}\sigma) \end{pmatrix}$$

Particle density

Pairing density

Particle density

$$\varphi_{q}(\mathbf{\tilde{r}}) = \sum_{i,\sigma} |\phi_{i}(\mathbf{\tilde{r}},\sigma,q)|$$

2

 $\rho(r) = \sum_{i} \varphi_2(E_i, r)^2 \qquad \tilde{\rho}(r) = -\sum_{i} \varphi_1(E_i, r)\varphi_2(E_i, r)$ M.V. Stoitsov et al., CPC (2013) **Reproduce** E_b and R_c within 1.5%

Model setup: initial density distribution

Multipole moments

$$Q_{\lambda,\tau} = \int \rho_{\tau}(\vec{r}) r^{\lambda} Y_{\lambda 0}(\theta) d^{3}r$$

Deformation parameters

$$\beta_{\lambda,\tau} = \frac{4\pi \, Q_{\lambda,\tau}}{3N_\tau R^\lambda}$$

Constrained SHFB calculation with fixed $Q_{\lambda}(\beta_{\lambda})$

TABLE II. Neutron-skin thicknesses Δr_{np} and deformation parameters β_2 and β_3 for different nuclei using different slope parameters *L* of the symmetry energy from SHFB calculations.

		$\Delta r_{\rm np}$ (fm)	
Nucleus	$\beta_2, \ \beta_3$	L = 30 MeV	L = 120 MeV
⁹⁶ Zr	0, 0	0.147	0.231
	0.06, 0.2 [43]	0.145	0.227
⁹⁶ Ru	0, 0	0.028	0.061
	0.16, 0 [43]	0.026	0.058
¹⁹⁷ Au	-0.15, 0 [44,45]	0.127	0.243
²⁰⁸ Pb	0, 0	0.149	0.281

Model setup: Glauber model

Model setup: multifragmentation process

Dynamics of participant matter is neglected!

A. Formation of heavy (A>3) clusters

 $\begin{array}{l} \text{MST} \quad \begin{array}{l} \Delta r < 3 \text{ fm (empirical nucleon interaction range)} \\ \Delta p < 300 \text{ MeV/c (empirical Fermi momentum at } \rho_0) \end{array} \end{array}$

B. Heavy (A>3) cluster deexcitation with GEMINI

1. Excitation energy

$$E = \frac{1}{N_{TP}} \sum_{i} \left(\sqrt{m^2 + p_i^2} - m \right)$$
Simplified
$$+ \int d^3 r \left[\frac{a}{2} \left(\frac{\rho}{\rho_0} \right)^2 + \frac{b}{\sigma + 1} \left(\frac{\rho}{\rho_0} \right)^{\sigma + 1} + \int d^3 r E_{sym}^{pot} \left(\frac{\rho}{\rho_0} \right)^{\gamma} \frac{(\rho_n - \rho_p)^2}{\rho}$$

(test-particle method for parallel events with similar collision configuration)

$$\left[\begin{array}{c} + \int d^3r \left\{ \frac{G_S}{2} (\nabla \rho)^2 - \frac{G_V}{2} [\nabla (\rho_n - \rho_p)]^2 \right\} \\ + \frac{e^2}{2} \int d^3r d^3r' \frac{\rho_p(\vec{r})\rho_p(\vec{r}')}{|\vec{r} - \vec{r}'|} - \frac{3e^2}{4} \int d^3r \left[\frac{3\rho_p}{\pi} \right]^{4/3} - \mathsf{E}_{\mathsf{GS}} \right] \right]$$

2. Angular momentum

$$\vec{L} = \sum \vec{r_i} \times \vec{p}_i$$

Free nucleons:

Direct production from A and residue from C
 Deexcitation from B

C. Coalescenceⁱ for light (A=2,3) clusters

$$f_d = 8g_d \exp\left(-\frac{\rho^2}{\sigma_d^2} - p_\rho^2 \sigma_d^2\right) \qquad f_{t/^3 \text{He}} = 8^2 g_{t/^3 \text{He}} \exp\left[-\left(\frac{\rho^2 + \lambda^2}{\sigma_{t/^3 \text{He}}^2}\right) - (p_\rho^2 + p_\lambda^2)\sigma_{t/^3 \text{He}}^2\right]$$

Results and discussions: spectator particle yield

Band: E/A ±1 MeV

• Non monitonic dependence on N_{ch} • Difference between N_n and N_p large at UCC, increasing with L or Δr_{np} , with small band

N_n: free spectator neutron number N_p: free spectator proton number

Results and discussions: probing L or Δr_{np}

Results and discussions: probing L or Δr_{np}

Relevant studies on $\Delta \mathbf{r}_{np}(\mathbf{\theta})$ **in deformed nuclei**

$\Delta \mathbf{r}_{\mathbf{np}}$ effect from different collision configurations

Nucleus	Deformation(s)	$\overline{\Delta r_{\rm np}}$ (fm)	
		$L = 30 { m MeV}$	$L = 120 { m ~MeV}$
$^{96}\mathrm{Zr}$	$\beta_2 = 0.06, \beta_3 = 0.2 $ [43]	0.145	0.227
$^{197}\mathrm{Au}$	$\beta_2 = -0.15$ [44]	0.127	0.243
$^{238}\mathrm{U}$	$\beta_2 = 0.28 \ [42], \ \beta_4 = 0$	0.156	0.291
	$\beta_2 = 0.28 \ [42], \ \beta_4 = 0.17$	0.153	0.291

Select $\Delta \mathbf{r}_{np}$ at different $\boldsymbol{\theta}$

Deformed $\Delta \mathbf{r}_{np}$ from different SO interactions

Spectator nucleons from different W₀

• Isospin asymmetry increased for free spectator nucleons compared to spectator matter

- Comparing N_n/N_p in triggered tip-tip and body-body Ru+Ru as well as Au+Au collisions may probe $\Delta r_{np}(\theta)$ and W_0
- Such effect is independent of L

a-cluster structure in light nuclei from Brink wave function

$$= \sum_{i=1}^{A} E_{i}^{\text{c.m.}} + \sum_{i < j} V^{NN}(r_{ij}) + \sum_{i < j} V^{\text{Coul}}(r_{ij}) + \sum_{i < j} V^{ls}(r_{ij})$$

Volkov No.2 force $V^{NN}(r_{ij}) = (V_1 e^{-\alpha_1 r_{ij}^2} - V_2 e^{-\alpha_2 r_{ij}^2})(W - M\hat{P}_{\sigma}\hat{P}_{\tau} + B\hat{P}_{\sigma} - H\hat{P}_{\tau})$

spin-orbit interaction $V^{ls}(r_{ij}) = u_{ls} \left(e^{-\alpha_3 r_{ij}^2} - e^{-\alpha_4 r_{ij}^2} \right) \vec{L} \cdot \vec{S} \hat{P}_{31}$

Ĥ

Distance parameters are determined by minimizing the energy for a particular configuration

density distribution
$$\rho(\vec{a}) = \frac{\langle \Phi | \sum_{i=1}^{A} \delta(\vec{r}_i - \vec{a}) | \Phi \rangle}{\langle \Phi | \Phi \rangle} = \sum_{i=1}^{A} \rho_i(\vec{a})$$

Forward/backward particle yields as a probe of α-cluster configuration in ¹²C and ¹⁶O

Root-mean-square (RMS) radii in fm of ¹²C and ¹⁶O for different configurations.

tetrahedron

10¹

10⁰

10⁻¹

10⁻²

10¹

10[°]

10-1

300¹⁰⁻²

2.45

sphere

triangle

trahedr

sphere

square

chain

200

Y-shape

chain

Y-shape

3.09

100

N_{ch}

L.M. Liu, S.J. Li, Z. Wang, JX, Z.Z.Ren, and X.G. Huang, PLB (2024)

Forward/backward particle yields as a probe of α-cluster configuration in ¹²C and ¹⁶O

- With initially α-cluster structure, neutrons and protons are more likely to form α particles or light nuclei at forward/backward rapidities.
- Chain configuration leads to more α particles or light nuclei compared to more compact configurations.
- The uncertainties in the deexcitation process are largely reduced in ultracentral collisions.

L.M. Liu, S.J. Li, Z. Wang, JX, Z.Z.Ren, and X.G. Huang, PLB (2024)

Directly probing existence of α-cluster structure in ²⁰Ne

We fit the realistic density distribution with the deformed WS form, so they have the overall similar shape.

$$\rho(r,\theta) = \frac{\rho_0}{1 + \exp[(r - R(\theta))/a]}$$
$$R(\theta) = R_0 \left[1 + \sum_{n=2,3} \beta_n Y_{n,0}(\theta) \right]$$

It is difficult to distinguish the two cases through mid-rapidity observables in ²⁰Ne+²⁰Ne collisions based on AMPT.

L.M. Liu, H.C. Wang, S.J. Li, C.J. Zhang, JX, Z.Z.Ren, J.Y. Jia, and X.G. Huang, PRC (2025)

Directly probing existence of α-cluster structure in ²⁰Ne

- Small spectator nucleon yield and larger yields of α particles and light nuclei are observed with initially α-cluster structure in UCC.
- Taking the yield ratio further reduces the theoretical uncertainty.
- 20% effect at RHIC and 25% effect at LHC

L.M. Liu, H.C. Wang, S.J. Li, C.J. Zhang, JX, Z.Z.Ren, J.Y. Jia, and X.G. Huang, PRC (2025)

Summary

- Free spectator particle yield: clean probes
- Ultracentral HIC: free from deexcitations
- Probe neutron-skin thickness $\Delta r_{np} \sim L$
 - $(N_n)^{Zr+Zr}/(N_n)^{Ru+Ru}$ reduce uncertainties
 - $(N_n/N_p)^{Zr+Zr}/(N_n/N_p)^{Ru+Ru}$ cancel detecting efficiency
- Triggering collision configurations: $\Delta r_{np}(\theta) \sim W_0$
- Probe α-cluster structure/configuration in ¹⁶O+¹⁶O and ²⁰Ne+²⁰Ne
 - $N_n/(2N_d+4N_a+6N_{Li}^6)$
 - $N_n/(3N_t+6N_{He}^6)$
 - $N_n / (3N_{He}^3)$

Thank you! junxu@tongji.edu.cn