

RHIC上的电磁探针实验研究

杨 驰 山东大学

Evolution of relativistic heavy-ion collision system

Photon and dilepton productions in hot medium

"Thermal sources"

 γ : could be either photon or virtual photon (important to direct virtual photon measurement) $_3$

Chronometer and thermometer

Yield and Slope of EM probes: sensitive to system evolution and temperature

Schematic view of direct photon

Temperature: one of the most important properties of the HOT and dense medium

Prompt

					Rŀ	HIC						
						Chin Chin mai	nese S ny sub	TAR g syste	jroup ems, e	contri specia	buted to ally at ST	о ГAR
		[/]				1 - 2 4	£ 1				ATTALIA-Day	Area A
BOOS	STAR	TOF	MTD	HFT	iTPC	eTOF	EPD	FST	FTT	FCS		
BOOS	STAR CCNU	TOF	MTD	HFT	iTPC	eTOF	EPD	FST	FTT	FCS		- Curi
BOOS	STAR CCNU FDU	TOF	MTD	HFT	itpc	eTOF	EPD	FST	FTT	FCS		
BOOS	STAR CCNU FDU IMP	TOF	MTD	HFT	itpc	eTOF	EPD	FST	FTT	FCS		
BOOS	STAR CCNU FDU IMP SDU	TOF	MTD	HFT	itpc	eTOF	EPD	FST	FTT	FCS		
BOOS	STAR CCNU FDU IMP SDU THU	TOF	MTD	HFT	iTPC	eTOF	EPD	FST	FTT	FCS	ANDEMS	

Facing challenges: Direct Photon Puzzle as an example

7

Direct photon yields at RHIC

包贤文 (山大)

- *dN_{ch} /dη* scaling over centralities and energies
 (200GeV to 14.6 GeV)
- Indicating similar emission source and properties
- Can be linked to the search of CEP?

Scaling power **STAR: ~ 1.4 PHENIX: ~ 1.1** (QGP: ~ 1.8 Hadronic medium: ~ 1.2)

"A puzzle in a puzzle"

- Tension observed between STAR and PHENIX from QM14
- Need to solve/confirm this tension firstly
- Can we measure direct photon v₂ at STAR?

Direct photons in Beam Energy Scan Phase II

Yield: well described by theoretical calculation, similar to that at A+A 200GeV at STAR

About Direct Photon Puzzle

Yield

V_n

- Seems more and more clear with new measured STAR and ALICE results (arXiv: 2411.14366)
- Still need more measurements especially for π^0 and v_2 from STAR (isobar, Run 23 and 25)

Theoretical calculations should simultaneously describe direct photons and dileptons.

"Magnetic field effect on photons in Heavy Ion Collisions" 王昕杨 周六16:10 分会场二

Dileptons in Beam Energy Scan and Isobar

STAR, PRC 2023

Technique challenges:

- chnique challenges:
- Low S/B ratio
- Pollution from hadron
- Need large statistics

2.5 M_{ee} (GeV/*c*²)

PHSD Model: in-medium p + QGF

Temperature in different stages

dN/dMee

Mee

Non-equilibrium contribution needs to be considered

Link to this parallel session

Global polarization study guide us to study our previous observables in spin and polarization dimensions

梁作堂、王新年 PRL2005, PLB2005

Linearly polarized photon in UPC

- Photon-photon collision
- Photon-gluon collision

Will only discuss the part related to nuclear/nucleon structure

Wangmei's UPC overview talk at Sunday Xin's talk on 11:55 in this session Kaifeng's poster 152

Linearly polarized photon-photon collision

1400

https://www.bnl.gov/newsroom/news.php?a=119023

杨驰(山大)、杨帅(华南师大)、查王妹(科大)

Breit-Wheeler Process at RHIC-STAR

- Observe 6085 exclusive e⁺e⁻ pairs from data collected in 2010 at STAR
- No vector meson contribution visible
- Energy spectrum
- Photon transverse polarization & spatial distribution

Constrain charge radius

王晓凤 (山大)

- Compare QED with precise experimental measurement (assume Wood-Saxon form) $\rho_A(r) = \frac{\rho_0}{1 + \exp[(r - R)/d]}$
- Difference between UPC and HHIC

- Potential final-state effect in HHICs can modify the results of the charge radius extraction and favors an apparent large radius
- Constrain in UPC: consistent with low energy e-scattering results within 1 sigma

RHIC Run23-25 for future

Linearly polarized photon-gluon collision

- The pattern changes according to the nuclear radius
- Precious enough to study the nuclear structure

Double slit experiment at Fermi scale

马余刚 NST2023 News&Views

查王妹等 PRC2019

- Cancel the impact from interference in radius extraction
- Solve a mystery last over 20 years
- Can be used to study neutron skin

	¹⁹⁷ Au	²³⁸ U
STAR R (fm)	$6.53 \pm 0.03 \pm 0.05$	$7.29 \pm 0.06 \pm 0.05$
STAR (cos 2φ) (%)	29.2 ± 0.4 (statistical) ± 0.4 (systematic)	23.7 ± 0.6 (statistical) ± 0.4 (systematic)

17

Summary

Over the last decade, there are plenty of physics measurements on EM probes at RHIC

Hot QCD in HHIC

Temperature, VM in-medium modification, potential magnetic effect

Cold QCD and QED in UPC

Fundamental QED process, QED vacuum, EM field, nuclear/nucleon structure

Current and future opportunities at RHIC

- STAR detector is now at the peak of performances in resolution, acceptance, DAQ rate...
- RHIC top energy run at Run23 to Run25, large data samples for statistics hunger analysis such as EM probes
- Current BES-II, isobar and FXT data provide various chances to study EM probes
- Polarization of EM probes