惠州强子谱仪 (HHaS)

仇浩 重离子科学与技术全国重点实验室 中国科学院近代物理所

- HIAF高能终端可能研究的物理
- 谱仪概念设计
- 各探测器
- 预期性能
- 部分模拟结果
- 造价估计
- 国际竞争
- 合作组

HIAF

"十二五"国家重大科技基础设施

广东惠州

HIAF

- 绝大部分磁铁等设备已安装
- 今年将建成并完成首轮实验

HIAF及HIAF-U

	E _k (GeV/u)	√s _{NN} (GeV)
HIAF p束	<9.3	<4.58
HIAF U束	<2.45	<2.85
HIAF-U U束	<9.1	<4.54

惠州强子谱仪(Huizhou Hadron Spectrometer)

- 质子束流 + 可能产生的K/π次级束流: η介子物理、轻强子物理
 - 重离子束流: 超核、核物质相结构、状态方程

η介子物理

- 粒子物理标准模型面临一些难题,需要超出当前标准模型的新物理
- e.g.中微子有质量

- 粒子物理标准模型面临一些难题,需要超出当前标准模型的新物理
- e.g.宇宙正反物质不对称

η介子物理

- 粒子物理标准模型面临一些难题,需要超出当前标准模型的新物理
- e.g.暗物质

- 粒子物理标准模型面临一些难题,需要超出当前标准模型的新物理
- 可能存在一组(sector)暗物质粒子,通过"门户"(portal)粒子与标准模型粒子 有很微弱的联系 仇浩 – 中科院近代物理所

η介子物理

- 粒子物理标准模型面临一些难题,需要超出当前标准模型的新物理
- 除了标准模型预言的Higgs粒子,LHC的高能量前沿实验没有发现其它新粒子/新物理
- 高精度前沿测量,也是发现新物理的重要手段,如µ子反常磁矩g-2、W质量 10

- 在暗物质粒子寻找中,传统的大质量弱相互作用粒子(WIMP,GeV~100TeV)可能存
 在的参数空间不断被实验排除
- 轻暗物质粒子(MeV~GeV)当前实验限制较少,是重要的实验寻找方向
- 强流加速器装置是寻找轻暗物质粒子的有力工具

η介子物理

- η、η'和Higgs是已知仅有的3种全零量子数粒子
 - Q = I = J = S = B = L = 0
- ⇒标准模型衰变被压低
- ⇒新物理的分支比更大
- η/η'衰变可以用来寻找多种连接暗物质世界的
 门户(portal)粒子,以及检验基本对称性

暗光子

 $\eta \rightarrow \gamma A'$ $A' \rightarrow \mu^+ \mu^- / e^+ e^-$

暗Higgs粒子

 $\eta \to \pi^0 H$

 $H \rightarrow \pi^+\pi^-/\mu^+\mu^-/e^+e^-$

η → ππа

η介子物理

- η、η'和Higgs是已知仅有的3种全零量子数粒子
 - Q = I = J = S = B = L = 0
- ⇒标准模型衰变被压低
- ⇒新物理的分支比更大
- η/η'衰变可以用来寻找多种连接暗物质世界的
 门户(portal)粒子,以及检验基本对称性

• HIAF也为轻强子物理研究提供了良好的束流条件

核物质相结构

- 通过不同能量的重离子碰撞,能扫描核物质相图上的不同区域
- 寻找理论预言的一级相变和临界点

- 通过不同能量的重离子碰撞,能扫描核物质相图上的不同区域
- 寻找理论预言的一级相变和临界点

核物质状态方程

- 高密核物质状态方程
- ⇒ 中子星结构和性质

- 超核性质、(多奇异)超核的发现
- ⇒ 超子-核子、超子-超子相互作用
- → 中子星结构和性质

- HIAF高能终端可能研究的物理
- 谱仪概念设计
- <u>各探测器</u>
- 预期性能
- 部分模拟结果
- 造价估计
- 国际竞争
- 合作组

惠州强子谱仪(HHaS)概念设计

5维硅像素径迹探测器

- 5维径迹探测: 3维位置 + 时间 + 能量损失
 - 时间用于区分不同碰撞事例: Δt ~10ns (1/100MHz)
 - →寻找稀有事例(如超出标准模型)、高精度测量所必需
 - 能量损失(dE/dx)用于区分不同轻核电荷Z(d, 4He, 6Li…)
 - → 超核等测量所必需
- 像素尺寸~<100µm ⇒ Δx ~<20µm
- $X/X_0 \sim 0.4\%$
- 单pixel死时间~10µs ⇒ 控制高事例率时的占有度

- 已完成两代Nupix-H芯片设计、流片、测试, Nupix-H3流片中
- 逐步接近HHaS需求指标

5维硅像素径迹探测器

Nupix-H2-test测

试结果

9 ke⁻

28.705 um

≤ 48.75 e⁻

25.88 ns

Nupix-H1测试⁹⁰Sr β团簇及其能谱

HHaS需求

~100 um

≤10 ns

≤ 10 µs

≥ 16 MIPs (~ 12 ke⁻)

≤1/5 MIPs (~ 150 e⁻)

≤ 200 mW/cm2

Nupix-H2-test芯片功能

电子学测试波形

状态

达标

达标

接近指标

暂未要求

暂未要求

达到指标同量级

- 基于国内工艺,首次实现了MAPS芯片每个像素时间、能量损失读出
- 逐步接近HHaS需求指标

参数

功耗

死时间

像素尺寸

能量测量范围

能量测量噪声

时间测量精度

LGAD飞行时间探测器

- 最内层测量起始时间,外层、端盖测量到达时间
- 带电粒子鉴别 + 进一步区分不同事例的径迹
- Δt~30ps
- 拟采用条状电极AC LGAD
 - Δx_{rq} ~10µm ⇒ 同时用于径迹拟合
 - 片内无死区
- X/X₀ ~< 3%

双读出电磁量能器

- REDTOP实验组研发的ADRIANO2式电磁量能器
- 铅玻璃+闪烁体双读出 ⇒ 很好的 e^{+-} vs. π^{+-} 、 γ vs. n 鉴别能力
 - 铅玻璃: 切伦科夫光, 仅对电磁簇射敏感
 - 闪烁体:对电磁和强子簇射同时敏感
- ΔE/E ~ 3% @ 1GeV
- Δt ~ 200 ps, 用于区分不同事例的信号
- 成型时间(模块死时间)~µs,控制高事例率时的占有度

- HIAF高能终端可能研究的物理
- 谱仪概念设计
- 各探测器
- <u>预期性能</u>
- 部分模拟结果
- 造价估计
- 国际竞争
- 合作组

性能预期

charged particles

方位角、能动量覆盖

事例率	~100 MHz (p束流), ~1 MHz (重离子束流)
方位角覆盖	θ: 10°~100°; φ: 0~2π
带电粒子动量测量范围	p _T > 50 MeV (0.8 T磁场)
γ能量测量范围	E > 50 MeV
典型动量分辨	~3% (1.6 T磁场); ~6% (0.8 T磁场)
EM能量分辨	~3% @ 1GeV
典型径迹位置分辨	~500 µm (碰撞顶点附近)
鉴别粒子	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He

事例率	~100 MHz (p束流), ~1 MHz (重离子束流)	
方位角覆盖	θ: 10°~100°; φ: 0~2π	
带电粒子动量测量范围	p _T > 50 MeV (0.8 T磁场)	
γ能量测量范围	E > 50 MeV	
典型动量分辨	~3% (1.6 T磁场); ~6% (0.8 T磁场)	
EM能量分辨	~3% @ 1GeV	
典型径迹位置分辨	~500 µm (碰撞顶点附近)	
鉴别粒子	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He	

- HIAF高能终端可能研究的物理
- 谱仪概念设计
- 各探测器
- 预期性能
- 部分模拟结果
- 造价估计
- 国际竞争
- 合作组

	FLUKA模拟结果		参考抗辐照性能		
	辐射剂量 (Gy)	Si1MeV等效中子 通量(n _{eq} /cm ²)	探测器/材料	辐射剂量 (Gy)	Si1MeV等效中子 通量 (n _{eq} /cm ²)
最内层硅 3000	3×10 ¹²	pixel	2×10 ⁴	1.7×10 ¹³	
		LGAD		1×10 ¹⁵	
最内层EMC 50	2×10^{11}	铅玻璃	20		
	50	5 ~ 10	SiPM		1×10 ¹⁴

- 大部分探测器部件、材料可以满足抗辐照要求
- 铅玻璃收到的辐射剂量接近其极限,需要选择测试

- 1.8 GeV p + ⁷Li, 100MHz事例率, 一个月, 平均流强/峰值流强 = 30%
- 共产生6 × 10¹¹ 个η ~当前世界所有η数据的1000倍

超核重建模拟

• 几百µm的位置分辨能力

⇒ 几乎无本底的超核等弱衰变粒子重建

- HIAF高能终端可能研究的物理
- 谱仪概念设计
- 各探测器
- 预期性能
- 部分模拟结果
- <u>造价估计</u>
- <u>国际竞争</u>
- <u>合作组</u>

子系统	预算(万元)
靶	50
硅像素径迹探测器	3000
LGAD飞行时间探测器	3300
电磁量能器	2200
螺线管磁铁	2000
技术支持系统	100
数据获取系统	2400
合计	13050

• 总建造预算约1.3亿

- 82-152 M USD, 5.6-10亿元
- 处于争取加速器实验室、经费支持阶段
- 无dE/dx测量,无法满足相结构、超核研究需求
- 电磁+强子量能器

- 55M欧元,4亿元
- 计划2028年建成
- 事例率<10MHz,无更高的质子打靶事例率
- 低能区方位角覆盖不足

第一届HIAF高能终端谱仪合作组会议

Nov 16–18, 2024 Asia/Shanghai timezone

Enter your search term Q

• 欢迎加入

仇浩 – 中科院近代物理所

小结

- 惠州强子谱仪(HHaS)
 - 先进的探测器技术
 - 5维硅像素径迹探测器
 - LGAD飞行时间探测器
 - 切伦科夫-闪烁光双读出电磁量能器
 - 优异的性能
 - 极高事例率:~100MHz(质子束流)
 - 大接受度
 - 全面的粒子鉴别: e⁺⁻, γ, π⁺⁻, K⁺⁻, p, d, t, ³He, ⁴He
 - · 紧凑尺寸 ⇒ 造价可控 ~1.3亿
 - 具有与CBM+REDTOP相当的性能和潜力
 - 可以研究广泛的物理

5维硅像素径迹探测器

设计指标:

像素尺寸	30 µm	30 µm	45 µm	~100 µm
能量测量范围	6 MIPs (~5 ke ⁻)	12 MIPs (~10 ke ⁻)	16 MIPs (~15 ke ⁻)	16 MIPs (~15 ke ⁻)
能量测量噪声	< 1/5 MIPs (150 e ⁻)			
时间测量精度	百ns级	~25 ns	~10 ns	~10 ns
功耗	-	-	≤ 600 mW/cm²	~200 mW/cm2
死时间	-	-	102.4 us	~10 µs

- 已完成两代Nupix-H芯片设计、流片、测试, Nupix-H3流片中
- 逐步接近HHaS需求指标

- 重离子碰撞
 - 1MHz
 - ~100 track
 - 6 hits / track
 - 1M*100*6 = 600M hits / s
- η 介子物理
 - ~>100MHz
 - ~4 track
 - 6 hits / track
 - 100M*4*6 = 2400M hits / s
- 新谱仪数据带宽需求与CEE在同一个量级

- CEE
 - 10kHz
 - ~100 track
 - ~30 hits / track
 - ~20 digi / hit
 - 10k*100*30*20 = 600M digi / s

极化束流、靶?

自旋物理

•

未来的未来

缪子探测器: 塑料 + MRPC?

η介子物理增加>2倍衰变道

欢迎新想法+贡献

未来的未来

• ³He极化靶概念图

未来的未来

带电次级束流线设计

▶ 带电粒子束流的分离和甄别

13/30

□ 总长32.67米:3个二级磁铁,9个四级磁铁,2个静电场,若干多极磁铁 □ 预估造价: 磁铁 100 万+电源50万+真空设备+束流诊断系统~300万+其他?

- π&Κ介子束流设计模拟
- 叶志鸿、王科、申国栋、冒立军

· 清華大学 Tsinghua University

静电场

5 000 m

~70

6 hits, R_in=10cm, R_out=30cm, L=90cm, 0.02mm hit error, 0.8T 6 hits, R_in=10cm, R_out=30cm, L=90cm, 0.02mm hit error, 1.6T 02 0.2 — 10° — 10° 0.18 0.18 20 - 20 0.16 0.16 - 30° 30 30 cm, 0.8160° 60' 30 cm, 0.14 0.14 1.6T 90 0.12 0.12 $\sigma_{p_{_{_{T}}}}/p_{_{_{T}}}$ $\sigma_{p_{_{T}}}/p_{_{T}}$ 0.1 0. 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 1.2 0.6 0.8 1.4 1.6 1.8 0.4 0.6 0.8 1.2 1.6 1.4 p_{_} (GeV/c) p_{_} (GeV/c) 6 hits, R_in=10cm, R_out=50cm, L=150cm, 0.02mm hit error, 0.8T 0.2 多次库伦散射贡献 hit误差贡献 — 10° 0.18 20° 0.16 - 30° $\propto \sqrt{(X/X_0)} / (BL)$ ∝ σ / (B L² √N) 50 cm, 0.8T 60° 0.14 90 0.12 $\sigma_{p_{_{T}}}/p_{_{T}}$ 0.1 0.08 0.06 훢 0.04 0.02 1.2 1.6 1.8 2 0.2 0.6 0.8 1 1.4

- 提高磁场强度, 增大探测器半径, 都可以提高动量分辨

仇浩 – 中科院近代物理所

p_{_} (GeV/c)

径迹探测器+飞行时间探测器尺寸

机械布置和散热问题

- 最外层LGAD可以用水冷
- 预冷气冷却可以大幅提升散热效果
 - STAR pixel的冷却气体进出温差只有1.5度
 - 如果吹入氮气温度~5℃,回收氮气温度~15℃,则同通风量散热量可以增大7倍
 - 额外的好处:更低的芯片工作温度,更小噪声
 - 外围吹常温氮气,防止水汽凝结

- π⁺⁻/e⁺⁻~100, n/γ~8 ⇒ 为鉴别 e⁺⁻、γ, 需大幅压低π⁺⁻、n本底
- 而强子簇射产生的切伦科夫光远少于电磁簇射,测量切伦科夫光,强子簇射本底 被压低

合作组

	FLUK	A模拟结果	参考抗辐照性能				
	辐射剂量 (Gy)	Si1MeV等效中子 通量(n _{eq} /cm ²)	探测器/材料	辐射剂量 (Gy)	Si1MeV等效中子 通量 (n _{eq} /cm ²)		
最内层硅	3000	2×10^{12}	pixel	2×10 ⁴	1.7×10 ¹³		
		3 \ 10	LGAD		1×10 ¹⁵		
是山口ruc	50	2×10^{11}	铅玻璃	20			
取内层EIVIC		3 ~ 10	SiPM		1×10 ¹⁴		

- 表中铅玻璃收到的辐射剂量(50Gy)接近其极限,但铅玻璃有很多不同型号、配方
- 表中: TF101, 接收20Gy辐照后光传输率降低1%
 - <u>https://doi.org/10.1016/0168-9002(94)90990-3</u> ——80年代文献
- 国产铅玻璃ZF2(即ADRIANO2 使用的型号),抗辐射性能无相关资料,待测试
- 德国SCHOTT公司SF6型号铅玻璃,4000Gy辐射剂量照射后,目测透光性良好
- 其它措施: PbF2晶体替代 / 紫外光或高温恢复

- 表中铅玻璃收到的辐射剂量(50Gy)接近其极限,但铅玻璃有很多不同型号、配方
- 表中: TF101, 接收20Gy辐照后光传输率降低1%
 - <u>https://doi.org/10.1016/0168-9002(94)90990-3</u> ——80年代文献
- 国产铅玻璃ZF2(即ADRIANO2 使用的型号),抗辐射性能无相关资料,待测试
- 德国SCHOTT公司SF6型号铅玻璃,4000Gy辐射剂量照射后,目测透光性良好
- 其它措施: PbF2晶体替代 / 紫外光或高温恢复

物理目标

Frontiers of Physics https://doi.org/10.1007/s11467-021-1062-0

Front. Phys. 16(6), 64701 (2021)

REVIEW ARTICLE

Electron-ion collider in China

	Chapter 2 EicC physics highlights	10
2.1	One-dimensional spin structure of nucleons	10
2.2 ′	Three-dimensional tomography of nucleons	13
2.2	2.1 Transverse momentum dependent parton	
	distributions	13
2.2	2.2 Generalized parton distributions	17
2.3 I	Partonic structure of nucleus	21
2.3	3.1 The nuclear quark and gluon	
	distributions	21
2.3	3.2 Hadronization and parton energy loss	
	in nuclear medium	23
2.4	Exotic hadronic states	24
2.4	4.1 Status of hidden-charm and	
	hidden-bottom hadron spectrum	24

	2.4.2	Exotic	e hadrons at EicC	27
	2.4.3	Cross	section estimates and simulations	29
2.5	Oth	ler impo	ortant exploratory studies	33
	2.5.1	Protor	n mass	33
	2.5.2	Struct	ure of light pseudoscalar mesons	35
	2.5.3	Intrins	sic charm	36
2.6	QC	D theor	y and phenomenology	38
	2.6.1	Syner	gies	38
	2.6.2	Lattic	$e \ QCD$	39
		2.6.2.1	Nucleon spin structure	39
		2.6.2.2	Proton mass decomposition	39
		2.6.2.3	1-D and 3-D structure of nucleons	39
		2.6.2.4	Partonic structure of the nucleus	40
		2.6.2.5	Exotic hadrons	40
	2.6.3	Contin	nuum theory and phenomenology	41
		2.6.3.1	Mass and matter	41
		2.6.3.2	1-D hadron structure	42
		2.6.3.3	Meson fragmentation functions	43

• 有成功的单一物理目标的专门实验,也有成功的多物理目标实验

仇浩 – 中科院近代物理所

Back-up

物理目标	过程	后续衰变	测量末态粒子	束流种类	质心系能量	束流能量	靶	极化	测量方法、测量量等信息
双重子态	p p → π+ d	-	π+ d	р	~2.6 GeV (扫描附近)	~ 3 GeV	р	更好	微分截面
双重子态	рр→d π+ π0	π0 → γ γ	d π+ γ γ	р	> 2.7 GeV (固定)	> 3 GeV	р		d π0不变质量
双重子态	рр→D30 π- π-	D30 → рр π+ π+	ррл+л+л-л-	p	> 2.7 GeV (固定)	> 3 GeV	p		p
重子内的五夸克成分							-		
隐奇异核子共振态	p p → p p φ	φ → K+ K-		р	~ 3.2 GeV?	~4.6 GeV?	p	更好	p phi不变质量
重子内的五夸克成分	p n \rightarrow d ϕ	φ → K+ K-		р	~ 3.2 GeV?	~4.6 GeV?	d? He3?	更好	截面 vs. 束流能量? 先不管
		$\eta' \rightarrow \pi$ + π - η							
		η → π+ π- π0							
重子内的五夸克成分	p p → p p η'	$\pi 0 \rightarrow \gamma \ \gamma$	рр	р	~ 3.2 GeV?	~ 4.6 GeV?	р	更好	截面 vs. 束流能量? 先不管
		Λ(1405) → Σ0 π0							
		$\Sigma 0 \rightarrow \Lambda \gamma$							
		Λ → p π-;	р К+р π-γγγ						
		$\Lambda(1405) \rightarrow \Sigma + \pi$ -		_					
		$\Sigma + \rightarrow p \pi 0$;							
隐奇异核子共振态	p p → p K+ Λ(1405)	$\pi 0 \rightarrow \gamma \ \gamma$	р К+рүγπ-	р	~ 3.2 GeV?	~ 4.6 GeV?	р	更好	Λ(1405)的不变质量谱
隐奇异核子共振态	p p → p K+ Λ(1520)	Λ(1520) → p K-	р К+р К-	р	~ 3.2 GeV?	~4.6 GeV?	р	更好	Λ(1520)的不变质量谱
"失踪"重子共振态	p p → p n π+	-	p π+ (n)	р	~ 3.5 GeV?	~ 5.6 GeV?	р	更好	p π+不变质量
"失踪"重子共振态	p p → p K+ Λ	∧ → р π-	р К+р π-	р	~ 3.5 GeV?	~ 5.6 GeV?	р	更好	K+ A不变质量
		$\Sigma 0 \rightarrow \Lambda \gamma$							
"失踪"重子共振态	p p → p K+Σ0	$\Lambda \to p \ \pi\text{-}$	p π- γ	р	~ 3.5 GeV?	~ 5.6 GeV?	р	更好	K+Σ0不变质量
^内部结构	p p → p K+ Λ	∧ → р π-	р К+ р л-	р	~ 3.5 GeV?	~ 5.6 GeV?	р	不需	∧衰变常数(衰变p动量方向跟∧方 向夹角)
ckm矩阵元Vus	p p → p K+ Λ	$\Lambda \rightarrow p e v$	р К+ре	р	~ 3.5 GeV?	~ 5.6 GeV?	p	不需	A半轻衰变(10^8个Lambda) BR, transition form factor

- 1995
- 2012
- 1990
- 1988
- 1984
- 1980
- 1979
- 1976
- 1969
- 1965
- 1957

数据处理能力需求

- 径迹重建CPU时间
 - 0.0012 s / hit
 - 7 hits / track
 - 4 track / event
 - 1.e8 event / s
 - 平均流强/最高流强~0.3
 - 1个月取数, 12个月处理
 - 总的需要CPU核数: 0.0012*7*4*1.e8*0.3/12 = 1.e5
- CPU机群预算: 10万元/100CPU核 * 1.e5 核 = 1亿元
- 使用GPU代替CPU~1/3
- 未来计算机发展~1/2
- 量能器重建能量>50MeV触发/在线选择
- ⇒数据处理机群预算在千万元量级

图 10 eTOF MRPC 结构示意图。

- MRPC,类似CEE ETOF
- 阻挡物质越少, μ⁺⁻动量可以越低, 但π⁺⁻压低系数变小

王荣、孙旭

- 石墨作为阻挡材料?更高效的μ⁺⁻/π⁺⁻鉴别技术?
- 时间分辨:几十ps
- 位置分辨:几cm 读出条pitch、双端读出时间差, 与径迹4维配对
- 因为大角度区没有高动量µ⁺⁻,仅布置于前角
- 面积~11 m² 造价~500万

慢引出束流时间结构

图 5.13(a)RKO双频调制时频率随时间变化,(b)RKO双频调制对spill时间结构的影响

Figure 5.13 (a) the frequency variation with time in the dual FM process of RKO, (b) the influence of dual frequency modulation of RKO on the spill structure

- BRing出来的spill的时间结构
- 红色是双频扫描的,1个峰和1个峰的重复频率在10~30kHz之间,峰与峰之间的束流
 较少
- BRing引出平台一个周期大约2us,按照3s的引出平顶,总共1.5e6圈,1e11ppp的
 流强,平均一圈才6.7e4个离子,估计涨落会比较大,也会有时间结构,需要模拟61

An Introduction to Charged Particles Tracking Francesco Ragusa

多次库伦散射MCS部分贡献:

 $\theta_0 = \frac{13.6}{\beta c p} z \sqrt{x/X_0} \left[1 + 0.038 \ln(x/X_0) \right]$

- 先计算长度I/2的径迹的散射角度 θ_0
- 再计算长度I/2的径迹两端 $θ_0$ 的角度对应的曲率1/R = $θ_0$ /(I/2)
- $R = \frac{p}{0.3R}$ 最后导出MCS动量分辨率贡献
- 这一部分贡献只是一个大概估算,实际情况取决于hit误差与MCS相对贡献大 小等

径迹探测器动量分辨率 75 hits, R=90cm, 1.0mm hit error, 0.5T, 90° 0.1_C Hit resolution 0.09 Uniform BField ----- π Multiple Coulomb Scattering mom. ----- p Multiple Coulomb Scattering 0.08 Non-Uniform BField w/o Beam Shield 0.03 - π Total Non-Uniform BField with Beam Shield 0.07 p Total 0.025 0.06 $\sigma_{p_{_{T}}}/p_{_{T}}$ CEE box TPC 0.05 0.02 0.04 0.015 0.03 0.01 0.02 0.01 0.005 Ó) 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0 0.6 0.8 0.2 0.4 p_T (GeV/c) p (GeV/c) 35 hits, R=130cm, 1.0mm hit error, 0.25T, 90° 0.1 10 c — — Hit resolution 0.09 -- π Multiple Coulomb Scattering 9 ο π p Multiple Coulomb Scattering 0.08 anti-proton π Total 0.07 p Total (%) ^Td /^Td⊽ d, 0.0, a, 0.05⊧ b 6 ٠ STAR TPC 5 0.04 0.03 0.02 0.01 0^L 0 0.5 1 1.5 2 2.5 3 3.5 0, 0.2 0.6 0.8 p₁(GeV/c) 0.4 p_{_} (GeV/c)

• CEE、STAR实验使用公式和模拟结果基本相符

• 重离子碰撞

- 1MHz
- ~100 track
- 6 hits / track
- η 介子物理
 - ~>100MHz
 - ~4 track
 - 6 hits / track
- CEE
 - 10kHz
 - ~100 track
 - ~30 hits / track
 - ~20 digi / hit
- 因此, 硅径迹探测器完成片上集团重建后, 新谱仪数据率与CEE在同一个量级 64

- 造价
 - 400元/cm² (芯片100 + FPCB电子学100 + 支撑结构等200) + 1200万研发费
 用 + 300万劳务费
 - 总面积28000 cm² ⇒ 400 * 28000 = 1100万
 - 桶部:最外层25cm半径,30cm长,最外层面积3.14*25*2*30 = 4700 cm^2,5层,总面积4700*6/2 = 14000 cm^2
 - 前端: 30cm半径, 5层, 3.14*30*30*5 = 14000 cm^2
 - 总造价1100万 + 1200万 + 300万 = 2600万

LGAD飞行时间探测器

- 造价
 - LGAD传感器(高能所-微电子所,2平方米)面积: 900万
 - ASIC (TSMC芯片, 有不确定性): 600万
 - 模块组装(倒装焊等): 400万
 - 电子学读出板: 500万
 - 高压系统(假设每个模块单独供高压): 300万
 - 低压系统: 100万
 - 冷却系统: 300万
 - 电缆等: 200万

- 能量分辨率~6%@1GeV,~25%@50MeV
- 时间分辨~215ps (0.8 GeV电子)
- 成型时间~0.5 µs
- 强子簇射切伦科夫光产额低于电子簇射,有利于压低中子、 m本底
- 造价:~<1000万

纯Csl

S8664-1010APD LED Test With Leading Edge Timing 800 成型前 700 TDC Time Resolution /ps 00 00 000 equivalent energy 1 GeV 200 100 100 200 300 400 Charge /fC Time resolution Amp 80000 **Output Waveform** 70000 60000 Fit Result 50000 40000 30000 1000MeV 20000 10000 200 400 600 800 1000 1200 1400 1600 1800 2000 20 15 E/MeV -400 -200 0 200 400 600 800

- 科大STCF预研
- 能量分辨率~2%@1GeV,~7%@50MeV
- 时间分辨
 - 成型前:~150ps@1GeV,小信号~1ns
 - 成型后: 600ps @ 1GeV, <u>小信号几个ns</u>
- 成型时间~1 µs
- 造价: 5800万(θ=10-100度)/4000万(θ=10-60度)

- 0.3mm铅 + 1.5mm塑闪(铅辐射长度0.56cm)
- 能量分辨率~6%@1GeV,~20%@50MeV(公式推算)
- 阈值可设在25MeV
- 时间分辨~100ps @ 1GeV, ~500ps @ 50MeV
- Micro-Pixel Avalanche Diodes (MAPD)死时间~50ns
 - 还有没有另外的电子学成型时间?
- 造价~<1千万
 - MPD ECAL 4.5m直径, 6m长, 第一期造价~3千万

纯Csl电磁量能器

Module	角度	数量	短边(cm)	长边(cm)
Shape 1	6.5	10	4.23	6.5
Shape 2	3	4	5.45	6.5
Shape 3	3	3	5.45	6.5

- 纯Csl晶体
 - 光衰减时间: 6ns / 35ns快慢成分
 - 光产额: 2.3 / 5.6% Nal
- 共~800块晶体,每块长20cm,尾端面6.5cm×6.5cm
- 每块晶体4片APD读出
- 能量分辨率~3%@1GeV
- 时间分辨好于1ns, 可在100MHz事例率下区分不同事例
- 耐辐射性: 100krad未见性能变化, 10¹²中子/cm²辐射后光产额降低0-20%
- 中科大、近物所等(STCF EMC预研)
- 造价: 5800万(θ=10-100度)/4000万(θ=10-60度)

纯Csl电磁量能器

71

纯Csl电磁量能器

- 电子学输出信号波形可长达1000ns
- 考虑100MHz事例率
- 每事例4个带电粒子+4中子可能簇射
- 每个晶体堆积事例概率~1
- 可用波形采样、拟合处理事例堆积
- 衰变双光子夹角较大,晶体尺寸满足分辨 要求

 $\eta \rightarrow \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^- \gamma \gamma$
EMC抗辐照性能要求估计

- 电离辐射剂量
 - 100MHz事例率,每个事例1.8GeV能量,一半能量均匀沉积在前角40cm半径, 25cm厚的晶体里,则一个月的辐射剂量为
 - 100e6*1.8*3600*24*30*1.60218e-10*0.5 / (3.14*40*40*25*4.51/1000) = 66 Gy
- 中子辐射剂量:
 - 100MHz事例率,每个事例4个中子,一半均匀射向前角40cm半径晶体,则一个 月的总中子通量量为
 - 100e6*4*3600*24*30*0.5 / (3.14*40*40) = 1e11 n / cm^2
- 与mu2e实验测试使用剂量(900 Gy、 9e11 n / cm^2)在一个量级 J. Phys.: Conf. Ser. 928 012041
- 可以通过150°C高温退火去除辐射影响Nuclear Instruments and Methods in Physics Research A 432 (1999) 138

图 10 eTOF MRPC 结构示意图。

- MRPC, 类似CEE ETOF
- 读出条pitch 25mm;双端读出时间差得到沿读出条方向位置信息: 100ps*c=30mm
- 两个维度均可得到cm量级的位置分辨率,与几十ps的时间分辨配合,可以与径迹 进行4维配对,压低强子簇射本底
- 面积: 3.14*0.55*0.55 + 3.14*0.8*0.8 + 2*3.14*0.55*1 + 2*3.14*0.8*1 = 11 m²
- 造价: CEE ETOF 8m², 350万 ⇒ 11 m², 500万

预冷气散热概念设计

Beam dump

模拟设置

探测器

- 硅径迹探测器: 纯硅, 100微米厚度
- LGAD: 纯硅, 300微米
- 电磁量能器(1层铅玻璃+Csl+硅)
- 事件产生: Fluka

- 500MeV U+U: 靶厚度250微米, 非弹散射事件率: 2%
 - 单束流粒子剂量 ⇒ 一个月剂量: 1MHz / 0.02 × 3600s/h × 24h/d × 30d
- 2GeV p+Li: 靶厚度5毫米, 非弹散射事件率: 0.4%
 - 单束流粒子剂量 ⇒ 一个月剂量: 100MHz / 0.004 × 3600s/h × 24h/d × 30d

铅玻璃

一个月运行辐射剂量和1MeV等 效中子涌量

	2 GeV p+Li (100MHz 1 month)		500 MeV U+U (1MHz 1 month)		探测器可承受 参考剂量/通量			
	Dose (Gy)	Si1MeV fluence (n _{eq} /cm ²)	Dose (Gy)	Si1MeV fluence (n _{eq} /cm ²)	探测器/材料/元 件	Dose (Gy)	Si1MeV fluence (n _{eq} /cm²)	
最内层Si	200	3×10 ¹²	3000	3×10 ¹²	pixel	<mark>2×10</mark> ⁴[1] 1×10 ⁶ [3]	1.7×10 ¹³ [1] 1×10 ¹³ [2] 1×10 ¹⁵ [3]	
					LGAD		1×10 ¹⁵ [4]	
量能器	20 50(前角局 部)	3×10 ¹¹	20	10 ⁹	铅玻璃	<mark>20</mark> [5]		
					SiPM		1×10 ¹⁴ [6]	

[1] ALPIDE抗辐射(ALICE IST upgrade已大规模使用): 1.7×10¹³n_{eq}/cm²

https://indico.cern.ch/event/695271/contributions/2956083/attachments/1637991/2614211/CERN_LHC_Rad_symp_23042018_HHI.pdf

[2] CMOS pixel探测器抗辐射(Supix-1, CEPC,山大): 1.×10¹³n_{eq}/cm² <u>https://arxiv.org/abs/2202.11471</u>

[3] DMAPS抗辐射(MALTA2, HL-HLC): 1.×10¹⁵n_{eq}/cm² <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10246423&tag=1</u>

[4] LGAD抗辐射(NDL, HL-LHC,高能所、北师大): 1.×10¹⁵n_{eq}/cm² <u>https://www.sciencedirect.com/science/article/pii/S0168900220310056</u>

[5] 铅玻璃抗辐射(TF101): 20Gy辐照后透光率降低1% https://doi.org/10.1016/0168-9002(94)90990-3

[6] SiPM抗辐射综述: 1.×10¹⁴n_{eq}/cm²

https://indico.ipmu.jp/event/166/contributions/2761/attachments/2145/2627/SiPM-rad-dam-review_PD18_Musienko-v3.pdf

- pixel、LGAD、SiPM,已有同类探测器满足抗辐射要求,需要研发和选型时确定抗辐射指标并实现
- 铅玻璃受到的辐射剂量与现有产品的抗辐射能力接近,需要专门研发提高,或每次实验后拆卸高温淬火恢复

e & muon

C, T, CP-violation	New particles and forces searches				
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	□ <i>Scalar meson searches (charged channel):</i> $\eta \rightarrow \pi^{\circ} H$ with $H \rightarrow e^+e^-$ and $H \rightarrow \mu^+\mu$				
CP Violation (Type $I - P$ and T odd , C even): $\eta \rightarrow 4\pi^{\circ} \rightarrow 8\gamma$					
\Box CP Violation (Type II - C and T odd , P even): $\eta \rightarrow \pi^{\circ} \ell^{*} \ell$ and $\eta \rightarrow 3\gamma$	□ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell^{+} \ell^{-}$ □ Protophobic fifth force searches : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow \pi^{+} \pi^{-}$ □ QCD axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^{+}e^{-}$ □ New leptophobic baryonic force searches : $\eta \rightarrow \gamma B$ with $B \rightarrow e^{+}e^{-}$ or $B \rightarrow \gamma \pi^{0}$				
□ <i>Test of CP invariance via</i> μ <i>longitudinal polarization:</i> $\eta \rightarrow \mu^+\mu^-$					
$\Box CP$ inv. via $\gamma *$ polarization studies: $\eta \rightarrow \pi^* \pi^- e^+ e^- \& \eta \rightarrow \pi^* \pi^- \mu^+ \mu^-$					
□ <i>CP</i> invariance in angular correlation studies: $\eta \rightarrow \mu^+\mu^-e^+e^-$					
$\Box CP$ invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- \pi^+ \pi^-$	□ <i>Indirect searches for dark photons new gauge bosons and leptoquark:</i> $\eta \rightarrow \mu^{+}\mu$ and $\eta \rightarrow e^{+}e^{-}$				
CP invariance in μ polar. in studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$					
$\Box T$ invar. via μ transverse polarization: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \rightarrow \gamma \mu^{+} \mu^{-}$	□ <i>Search for true muonium:</i> $\eta \rightarrow \gamma(\mu^+\mu^-) _{2M_{\mu}} \rightarrow \gamma e^+e^-$				
\Box CPT violation: μ polar. in $\eta \rightarrow \pi^{\dagger} \mu \nu v v \eta \rightarrow \pi \mu^{\dagger} \nu - \gamma$ polar. in $\eta \rightarrow \gamma \gamma$	□Lepton Universality □ $\eta \rightarrow \pi^{\circ} H$ with $H \rightarrow vN_2$, $N_2 \rightarrow h'N_1$, $h' \rightarrow e^+e^-$ Other Precision Physics measurements				
Other discrete symmetry violations					
Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$					
Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma (\mu^+ e^- + c.c.)$	$\Box Proton radius anomaly: \eta \to \gamma \mu^{+}\mu^{-} vs \eta \to \gamma e^{+}e^{-}$				
Double lepton Flavor Violation: $\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.$	\Box All unseen leptonic decay mode of η / η' (SM predicts 10 ⁻⁶ -10 ⁻⁹)				
Non- η/η' based BSM Physics	High precision studies on medium energy physics				
$\Box Neutral pion decay: \pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$	[•] Nuclear models				
$\Box ALP's \ searches \ in \ Primakoff \ processes: p \ Z \to p \ Z \ a \to l^+l^- \qquad (F.$	Chiral perturbation theory				
Kahlhoefer)	■Non-perturbative QCD				
Charged pion and kaon decays: $\pi + \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+ e^-$ and $K + \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+ e^-$	[□] Isospin breaking due to the u-d quark mass difference				
□ Dark photon and ALP searches in Drell-Yan processes: aabar $\rightarrow A'/a$	Octet-singlet mixing angle				
$\rightarrow l^+l^-$	^D <i>Electromagnetic transition form-factors (important input for g-2)</i>				

• 绝大部分eta衰变道研究需要电子 & / 缪子

- 低动量下鉴别缪子、高效排除pi+-, 很困难 ⇒ 可能只需要覆盖前角10-60度范围
- 可以调节EMC+铁的厚度,选取一定动量以上的缪子进行鉴别
- 例如,选取25cm Csl + 20cm铁,可以选择0.6GeV/c以上缪子, pi+-排除在7倍左右
- 选取25cm Csl + 40cm铁,可以选择0.8GeV/c以上缪子, pi+-排除在30倍左右
- 需要结合真实物理eta、本底产额、衰变运动学进行模拟,决定最佳铁厚度

	NAI(Tl)	CsI(Tl)	CsI	BaF ₂	CeF ₃	BGO	PbWO ₄	LYSO
Density [g cm ⁻³]	3.67	4.51	4.51	4.89	6.16	7.13	8.3	7.1
Radiation length [cm]	2.59	1.85	1.85	2.06	1.68	1.12	0.89	1.16
Molière radius [cm]	4.8	3.5	3.5	3.4	2.6	2.3	2.0	2.07
Interaction length [cm]	41.4	37.0	37.0	29.9	26.2	21.8	18.0	20.3
dE/dx)mip [MeV cm ⁻¹]	4.79	5.61	5.61	6.37	8.0	8.92	9.4	9.2
Refractive index [at λ_{peak}]	1.85	1.79	1.95	1.50	1.62	2.15	2.2	1.8
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Emission spectrum, λ_{peak}								
Slow component [nm]	410	560	420	300	340	480	510	
Fast component [nm]			310	220	300		510	420
Light yield rel. to NaI								
Slow component	100	45	5.6	21	6.6	9	0.3	
Fast component			2.3	2.7	2.0		0.4	75
Decay time [ns]								
Slow component	230	1300	35	630	30	300	50	
Fast component			6	0.9	9		10	35

 Table 6.2 Properties of scintillating crystals applied in particle physics experiments

- 考虑到几百MHz的事例率,需要光衰减时间~ns量级
- 初步考虑纯Csl,紫外扩展的SiPM,只对6ns快成分敏感~3个事件堆积,可以接受
 - 能量分辨率~2.3%@1GeV,总造价约1亿,科大STCF正在进行相关预研
- BaF2快成分光衰减时间0.9ns,但比Csl贵2-3倍 ⇒ ~2亿量能器造价,可能太贵了33

切伦科夫探测器(待定)

- 是否需要,取决于TOF和EMC能否在 整个动量范围衔接电子鉴别
 - TOF: e / pi 鉴别 @ p<0.3 GeV/c
 - EMC: ?
- 与REDTOP的CTOF类似
- 气凝胶介质,选择折射率1.02
- 只有粒子beta > 1/1.02 = 0.98, 才会发出切伦科夫光
 - e: p > 2.5 MeV ⇒ 几乎所有电子可见
 - pi: p > 685 MeV ⇒ 排除绝大部分强子,更高动量e pi鉴别依靠电磁量能器
- 只探测有无切伦科夫光,不成像
 - 制作成简单、统一的模块:暗盒、白膜、SiPM读出
 - 无需成像系统、无需高精度的平面 ⇒ 低成本、低风险
- REDTOP CTOF造价(最便宜版本): 0.6 M USD ⇒ 400万元

