

Observation of proton-antiproton pairs from QED vacuum excitation in Relativistic heavy-ion collisions

Xin Wu (吴鑫)

University of Science and Technology of China

2025.4.26

QED vacuum state

- The ground state of quantum systems is characterized by zero-point motion.
- Related phenomenon have been observed: Lamb shift, Casimir effect, Electric field fluctuations in vacuum...
- Can we directly "see" the vacuum quantum fluctuation?

Schwinger effect

The production rate of an e⁺e⁻ pair in a static field:

$$\Gamma = \frac{(eE)^2}{4\pi^3\hbar^2c} \Sigma_{n=1}^{\infty} \frac{1}{n^2} \exp\{-\frac{\pi m^2 c^3 n}{\hbar eE}\}$$

If an extremely strong external field is applied, the vacuum could spark.

$$E_c = \frac{m_e^2 c^3}{q_e \hbar} \approx 1.32 \times 10^{16} \,\mathrm{V/cm}$$

- The highest laser intensity currently can't achieve the Schwinger limit.
- Relativistic heavy-ion collisions provide ideal environment for studying the QED vacuum properties.

Observation of Breit- Wheeler process

STAR, Phys. Rev. Lett. 127 (2021) 5, 052302

- The strongest electromagnetic field on Earth.
- QED vacuum excitation can be regarded as $\gamma\gamma$ interaction process.
- Motivation: More complex system, such as proton-antiproton pairs, can they be produced through QED vacuum excitation?

The Solenoidal Tracker At RHIC (STAR)

Dataset and selection criteria

• Dataset: Au+Au ultra-peripheral collisions (UPCs) at $\sqrt{s_{NN}}$ = 200 GeV taken in 2010, 2011 and 2014

- BBC veto, TOFMulti, Coincidence between two ZDCs
- Events with only two charged tracks
- Protons and antiprotons identified by Time Projection Chamber

Dataset and selection criteria

• Dataset: Au+Au ultra-peripheral collisions (UPCs) at $\sqrt{s_{NN}}$ = 200 GeV taken in 2010, 2011 and 2014

- BBC veto, TOFMulti, Coincidence between two ZDCs
- Events with only two charged tracks
- Protons and antiprotons identified by Time Projection Chamber

Cosmic ray background

• The cosmic ray located at mid rapidity. $\longrightarrow 0.05 < |Y^{p\bar{p}}| < 0.5$

第20届全国中高能核物理大会,上海

Raw signal

- $p\overline{p}$ pairs are predominantly located within $p_T < 0.1 \text{ GeV}/c$ region.
- At the lowest mass bin, the raw counts are lower mainly due to the efficiency.
- The p and \overline{p} are almost back-to-back.

Cross section calculation

$$\frac{d\sigma}{dp_{T}} = \frac{N_{counts}(p_{T})}{\Delta p_{T} \times Lumi \times f_{analy} \times \epsilon_{Trigger} \times \epsilon_{TPC} \times \epsilon_{TOF} \times \epsilon_{PID} \times \epsilon_{V_{Z}}^{TPC}}$$
$$\frac{d\sigma}{dM_{p\bar{p}}} = \frac{N_{counts}(M_{p\bar{p}})}{\Delta M_{p\bar{p}} \times Lumi \times f_{analy} \times \epsilon_{Trigger} \times \epsilon_{TPC} \times \epsilon_{TOF} \times \epsilon_{PID} \times \epsilon_{V_{Z}}^{TPC}}$$

- The luminosity and the analyzed ratio is from the official webpage.
- The efficiency was determined through a data-driven approach.

The combined cross section

- $\sigma = 2.6 \pm 0.4(stat) \pm 0.5(sys) \,\mu b$
- The invariant mass spectrum is continuous and the pairs are mainly located at very low p_T .
- The first time measurement of the $p\overline{p}$ pairs produced in UPCs.

Low- $p_{\rm T} p \overline{p}$ Production Mechanism

Low- $p_{\rm T} p \overline{p}$ Production Mechanism

Comparision with model calculation

• Drell-Soding process significantly lower than the measurement

Comparision with model calculation

 Provide deeper insight into QED processes in extreme electromagnetic environments and non-perturbative QCD processes.

Summary

- The mass spectrum is continuous within the range of 2 GeV/ c^2 to 2.4 GeV/ c^2 , while the p_T distribution is concentrated below 0.1 GeV/c.
- The contribution from photonuclear interactions is negligible, strongly suggesting these proton-antiproton pairs arise from $\gamma\gamma$ interaction process.
- Provide deeper insight into QED processes in extreme electromagnetic environments and non-perturbative QCD processes.

Back up

Raw signal

- No significant difference appeared between proton and antiproton.
- The p_T shape is used to assess the quality of the dynamics in embedding.

Pure sample extraction

- A substantial pure p, π , K, and e sample is needed (purity, efficiency).
- Pure sample is taken from Au+Au collisions with minimum-bias trigger.
- For purity test, the p, π , and K sample is selected using the mass information from TOF.
- The electron sample is selected from photon conversion.

Purity estimation

 Generate a Monte Carlo sample with a flat distribution in proton-antiproton pair transverse momentum, mass, and rapidity. Use the two-body decay kinematics to generate the polar angle distribution of the single particles.

$$G(M_{p\bar{p}},\theta_p) = 2 + 4\left(1 - \frac{m_p^2}{M_{p\bar{p}}^2}\right) \frac{1 - 4m_p^2/M_{p\bar{p}}^2 \sin^2\theta_p \cos^2\theta_p + 4m_p^2/M_{p\bar{p}}^2}{\left[1 - \left(1 - \frac{m_p^2}{M_{p\bar{p}}^2}\right)\cos^2\theta_p\right]^2}$$

MC can discribe data very well.

Purity estimation

- The pure sample was used to estimate the purity of $p\bar{p}$ pairs.
- The purity of the proton is extracted as:
 - \checkmark Sampling the pair p_T , rapidity and invariant mass from the UPC-data

$$G(M_{p\bar{p}},\theta_p) = 2 + 4\left(1 - \frac{m_p^2}{M_{p\bar{p}}^2}\right) \frac{1 - 4m_p^2/M_{p\bar{p}}^2 \sin^2\theta_p \cos^2\theta_p + 4m_p^2/M_{p\bar{p}}^2}{\left[1 - \left(1 - \frac{m_p^2}{M_{p\bar{p}}^2}\right) \cos^2\theta_p\right]^2}$$

✓ Sampling the $n\sigma_p$, $n\sigma_e$ and $n\sigma_\pi$ with the given momentum to produce the MC pair, then calculate the $\chi^2_{p\bar{p}}$ of this pair.

Trigger efficiency correction - ZDC coincidence

- Use the ZDC-mon trigger (ZDC-ADC > 50) to calculate the ZDC-ADC upper cut efficiency.
- To estimate the correction factor, the remaining UPC-main trigger conditions need to be taken into account.

Trigger efficiency correction - ZDC coincidence

• The efficiency for ZDC-ADC less than 50 is extracted from the multi-Gaussian fit.

$$f(x) = g(x; A_1, \mu_1, \sigma_1) + g(x; A_2, \mu_2, \sigma_2) + g(x; A_3, \mu_3, \sigma_3) + g(x; A_4, \mu_4, \sigma_4) \qquad g(x; A, \mu, \sigma) = \frac{A}{\sigma\sqrt{2\pi}} exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

第20届全国中高能核物理大会,上海

Trigger efficiency correction –BBC veto and TOFMult

- 2 signal TOF trigger hits. Inefficient if signal+background > 6 TOF trigger hits.
- The efficiency is calculated as:

 $\epsilon_{BBCveto\&TOFMult} = N_{Events}^{BBCveto\&TOFMult \le 4} / N_{Events}$

Knock-out proton background

• Beam pipe could knock the proton out from the materials.

TPC efficiency extraction

• The TPC efficiency is calculated as:

 $\epsilon_{TPC} = N_{RC}^{with \, measured \, acceptance} / N_{MC}^{with \, measured \, acceptance}$

- For run10, a sector on the left side was malfunctioning.
- For midrapidity, the TPC has the membrane structure.

TOF matching efficiency

• The pure proton sample for TOF matching efficiency is obtained from Λ decay.

PID efficiency

- For a pp
 p pair with determined dynamic quantities, generate the single p/p
 angle distribution
 in pp
 rest frame.
- In the $p_T n\sigma_p n\sigma_e n\sigma_{\pi}$ 4D distribution, fix the p_T and sample the $n\sigma_p$, $n\sigma_e$ and $n\sigma_{\pi}$ simultaneously for both proton and antiproton.
- Calculate the PID efficiency: $\epsilon_{PID} = N_{events}^{passPIDcut} / N_{events}^{total}$.

- Low mass: rising due to the acceptance.
- High mass: higher single track p_T degrade the TPC's resolution.

Relationship extraction

- To minimize the influence of background, the band cut was required.
- For each V_z^{TPC} , a Gassuian function was used to fit the ZDC_{dt} to extract the mean ZDC_{dt} and its variance.

$$u_{ZDC_{dt}} = a * V_z^{TPC} + b$$

第20届全国中高能核物理大会,上海

V_z cut efficiency

- The full length in z is beyond the acceptance of the central STAR detector.
- Pile-up events will cause the V_z^{TPC} to be inaccurate in high luminosity situations.
- Using ZDC information to reproduce the full *z* shape.

Cross sections for each year

• The final cross sections after efficiency correction is:

• Each run can match with each other.

Systematic uncertainties summary

- Luminosity: Common uncertainty for each run.
- TPC efficiency: Extracted from the difference between the embedding and data.
- TOF efficiency: Extracted from the difference between the calculated from the Λ decay proton and the TPC proton.
- PID efficiency: Extracted from different centralities.
- V_z cut efficiency: Extracted from the calculated difference between UPC data and zerobias data.

	Run 10	Run 11	Run14
Luminosity	10%	10%	10%
nHitsDedx	5%	3%	2%
nHitsFit	1%	1%	2%
DCA	6%	7%	14%
TOF	10%	9%	3%
PID	7%	7%	2%
Vz	1%	2%	2%
Total	18%	17%	18%

Combine the cross section from different years

• For different years, the results were combined using the following formula:

$$mDen = \Sigma \frac{1}{E_{stat}^2}$$
$$W_{Run} = \frac{1}{E_{stat_{Run}}^2 \times mDen}$$

 $\sigma_{combined} = \Sigma W_{\rm Run} \times \sigma_{Run}$

 $E_{combined}^{stat} = \sqrt{\Sigma (W_{Run} \times E_{stat})^2}$

$$E_{combined}^{sys} = \Sigma W_{\text{Run}} \times E_{sys}$$