Contribution ID: 40

Collectivity in heavy ion collisions from RHIC -STAR BESII

Sunday, 27 April 2025 09:40 (20 minutes)

In heavy-ion collisions, directed flow (v_1) and elliptic flow (v_2) represent the first and second harmonic coefficients in the Fourier expansion of the final-state particle azimuthal distribution. These coefficients are sensitive to the equation of state (EoS) and the degrees of freedom in the produced medium. Measuring v_1 and v_2 of identified particles provides a powerful tool for investigating the properties of nuclear matter created in heavy-ion collisions.

With the enhanced statistical datasets from the second phase of the RHIC Beam Energy Scan (BES-II) program at STAR, we will present measurements of v_1 and v_2 for a range of hadrons, including π^{\pm} , K^{\pm} , K^0s , p, \bar{p} , ϕ , Λ , $\bar{\Lambda}$, Ξ^{\pm} , and Ω^{\pm} at \sqrt{sNN} = 3.0 - 19.6 GeV.

Additionally, we will present the scaling of the Number of Constituent Quarks (NCQ) for both particles and anti-particles. The NCQ-scaled v_2 ratios of π^+/K^+ , p/K^+ , π^-/K^- , \bar{p}/K^- , ϕ/K^- , Λ/K^0s , and $\bar{\Lambda}/K^0s$ will also be discussed over the range of $\sqrt{s_{NN}}$ = 3.0 - 19.6 GeV.

Furthermore, negative v_1 slopes for kaons are observed in the low p_T region ($p_T < 0.6 \text{ GeV/c}$). A comparison with JAM model calculations, both with and without spectators, suggests that the observed kaon anti-flow at low p_T can be explained by the shadowing effect of spectators in non-central collisions within the high baryon density region.

Primary author: 吴, 星 (Central China Normal University)

Presenter: 吴, 星 (Central China Normal University)

Session Classification: 分会场三