Observation of a family of all-charm tetraquarks

Kai Yi Nanjing Normal University

> 中高能物理大会 Apr 26, 2025

Kai Yi

Overview—Three new results based on the following CMS Physics Analysis Summary

- ◆ 1). J/ψJ/ψ updated result: Led by NNU-FDU-THU 南京师范大学、复旦大学等单位 J/ψJ/ψ spectroscopy in the four-muon final state using Run 3 data
- ◆ 2). Spin-parity measurement: Led by NNU-JHU-THU 南京师范大学、霍普金斯大学、清华大学等单位 Spin-parity analysis of the J/ψJ/ψ structure in the four-muon invariant mass spectrum
- ◆ 3). J/ψψ(2S) result: Led by NNU-THU 南京师范大学、清华大学等单位 Search for X(6900) in the ψ(2S)J/ψ channel at CMS
- 1) and 3) are the first two LHC analyses used 2024 data

Outline

D Motivation

- **Spin-parity measurement**
- $\Box J/\psi\psi(2S)$ result
- $\Box J/\psi J/\psi$ updated result
- □ Interpretations and summary

Status

> ALL exp observe X(6900) + additional structure

- Only CMS claimed X(6600) & X(7100)
- Different modeling of "hump" @6.6 GeV
- Hint (a) 7.2 GeV: LHCb not considered; ATLAS 3σ (local) hint in $J/\psi\psi(2S)$

All exp use interference, but in diff ways

- LHCb: extra BW interfere with SPS, X(6900) NOT interfering!
- ATLAS: interference among three resonances, two for the threshold hump, one for X(6900).
- CMS: multi-resonance interference
- > All exp see a threshold excess, NOT explained! Classified as background

DOI: 10.1103/PhysRevD.111.034038

A number of unresolved questions!

Status

A FAMILY of all-charm tetraquark states with same J^{PC} ?

Status—example in lepton sector

Positronium molecule in lepton sector

Both c and b quark are many magnitude heavier than electron, so what?

6

Status

Lattice QCD: 2411.11533 [hep-lat]

Found repulsive between two charmoniums

* Models of potential quark configurations for $J/\psi J/\psi$ mesons.

- Meson-meson "molecule" $(c\bar{c} c\bar{c})$
- Pair of diquarks $(cc-\bar{c}\bar{c})$
- Hybrid with a valence gluon
- Peaks as artifact of dicharmonia production thresholds

•

Family of all-charm tetraquarks with same J^{PC} offers new perspectives on interpretation for exotics

Outline

D Motivation

Spin-parity measurement

$\Box J/\psi\psi(2S)$ result

$\Box J/\psi J/\psi$ updated result

□ Interpretations and summary

Concept of Analysis: All Input

□ Framework

- $m_{4\mu}$ spectrum $X \to 4\mu$ identical to Phys. Rev. Lett. 132 (2024) 111901
- p_T and p_Z of $X \to 4\mu$ match MC to data
- Polarization of X assume unpolarized
- **Production angles** [for data test]
 - ϑ^* : angle between beam line and J/ψ momentum in X rest frame
 - Φ_1 : azimuthal angle between production plane and decay plane in X rest frame
- Decay angles [for data analysis]
 - Φ : azimuthal angle between two l^+l^- decay planes defined in X rest frame
 - ϑ_1 : helicity angle between J/ψ_1 momentum and l momentum defined in J/ψ_1 rest frame
 - ϑ_2 : helicity angle between J/ψ_2 momentum and *l* momentum defined in J/ψ_2 rest frame

Simplification in Angular Analysis

• After symmetries conditions, 8 models of J_x^P to test:

 $0^{-}, 0^{+}_{m}, 0^{+}_{h}, 1^{-}, 1^{+}, 2^{-}_{m}, 2^{-}_{h}, 2^{+}_{m}$

m: minimal dimension operators h: higher-dimension operators

- Full model possible, but complex $\mathcal{P}(\Phi, \vartheta_1, \vartheta_2; m_{4\mu})$
- Same properties of 3 resonances:

 $\mathcal{P}(m_{4\mu},\vec{\Omega}) = \mathcal{P}(m_{4\mu}) \cdot T(\vec{\Omega} \mid m_{4\mu})$ angular empirical

MELA • Pairwise test of J_x^P hypotheses i and j 1 optimal observable

 $\mathcal{D}_{ij}(\vec{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_i(\vec{\Omega} \mid m_{4\mu})}{\mathcal{P}_i(\vec{\Omega} \mid m_{4\mu}) + \mathcal{P}_j(\vec{\Omega} \mid m_{4\mu})} \qquad \text{Higgs discovery and spin-parity}$

Final 2D model:

$$\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu})$$

Kai Yi

Production angles

- Decay angles background-subtracted
 - 1D projections from 4D
 - Limited information

- Optimal Observable
 - 1D projection of data

Background 1D projection

Control Background MC using Data sideband

Kai Yi

 \checkmark Data are consistent with 2^{++} model, inconsistent with others

Combine 2D fit $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij})$

- PC = + + very certain
- $P \neq -1$ very certain
- $J \neq 1$ at 99% CL
- $J \neq 0$ at 95% CL
- J > 2 unlikely, require $L \ge 2$
- Rule out P=-1, L=0 most likely

 \succ $J^P = 2_m^+$ model survives

CMS Preliminar

135 fb⁻¹ (13 TeV)

135 fb⁻¹ (13 TeV)

CMS Preliminar

Outline

Motivation

Spin-parity measurement

$\Box J/\psi\psi(2S)$ result

- $\Box J/\psi J/\psi$ updated result
- Interpretations and summary

Explore $J/\psi\psi(\mathbf{2S})$ channel with Run II and Run III data

- X(6900) @ Threshold obvious
- X(7100) is visible
- According to $J/\psi J/\psi$ channel, should be an X(6900) and an X(7100)
- Signal dominated by Run III

Two dimensional fit for $J/\psi\psi(2S)$ yield

* $J/\psi\psi(2S)$ yield

- Run II ~109 ± 14
- ~2.6 X of Run II Run III ~281 ± 22 •
- Run II+III ~386 ± 26 •

3.5

Explore $J/\psi\psi(\mathbf{2S})$ channel with Run II and Run III data

* Only consider X6900 in $J/\psi\psi(2S)$ channel

M(X6900) = 6841 ± 14 MeV Γ(X6900) = 150 ± 28 MeV Significance of X(6900) = 7.5 σ

Explore $J/\psi\psi(\mathbf{2S})$ channel with Run II and Run III data

\triangleright	Significance of X((6900)	= 7.9σ
------------------	--------------------	--------	--------

> Significance of $X(7100) = 4.0\sigma$

ATLAS only claim X(6900) 4.7 σ in J/ $\psi\psi(\mathbf{2S})$ channel

Dominant sources	$M_{X(6900)}$	$\Gamma_{X(6900)}$	$M_{X(7100)}$	$\Gamma_{X(7100)}$
Signal shape	±29	±79	±22	±131
NRSPS shape	± 14	± 54	± 14	± 29
Combinatorial background shape	± 15	± 51	± 15	± 20
Mass resolution	± 5	± 7	± 5	± 9
Efficiency	±7	± 27	± 7	± 10
Add X(6600) peak	± 104	± 14	± 61	± 31
Fitter bias	$^{+9}_{-11}$	$^{+43}_{-37}$	$^{+29}_{-14}$	$^{0}_{-80}$
Total	+110	+120	+74	+140
10141	-110	-120	-70	-160

Params	<i>J/ψψ</i> (2S) [MeV]	<i>J/ψJ/ψ</i> [MeV]
M(BW2)	$6876^{+46+110}_{-29-110}$	$6847 \pm 10 \pm 15$
Γ(BW2)	$253^{+290+120}_{-100-120}$	$135^{+16}_{-14}\pm14$
M(BW3)	7169^{+26+74}_{-52-70}	$7173^{+9}_{-10}\pm13$
Г(ВW3)	$154^{+110+140}_{-82-160}$	$73^{+18}_{-15}\pm10$

✓ Confirmed in a different channel !
 ✓ Consistent with J/ψJ/ψ result !

Outline

Image: Motivation

- **Spin-parity measurement**
- $\Box J/\psi\psi(2S)$ result
- $\Box J/\psi J/\psi$ updated result
- □ Interpretations and summary

Datasets, MC, trigger, and event selection

✤ Data samples [315 fb⁻¹]

- Run II: 135 fb⁻¹ data taken in 2016, 2017 and 2018.
- Run III: 180 fb⁻¹ data taken in 2022, 2023 and 2024.

* Signal and Background simulated events:

- Signal $X \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ by JHUGen
- NRSPS and Feeddown by Pythia8
- **DPS** event-mixing
- Feeddown: $X(6900) \rightarrow J/\psi\psi(2S) \rightarrow J/\psi J/\psi + anything$

* Trigger of Run III

HLT_Dimuon0_Jpsi3p5_Muon2

- Level 1 requirements: 3 muons
- $2.95 < M(\mu^+\mu^-) < 3.25 \, GeV$
- $p_T(\mu) > 3.5 \, GeV$

HLT_DoubleMu4_3_LowMass [new trigger for Run III]

- Level 1 requirements: 2 muons
- $0.2 < M(\mu^+\mu^-) < 8.5 \ GeV$
- one muon $p_T(\mu) > 4 \text{ GeV}$ and the other $p_T(\mu) > 3 \text{ GeV}$
- $p_T(\mu^+\mu^-) > 4.9 \ GeV$

Event selection

Follow Run II cuts + A new trigger for Run III

$J/\psi J/\psi$ yield: Two-dimensional fit

□ Luminosity Run II 135 fb⁻¹ Run III 180 fb⁻¹ □ $J/\psi J/\psi$ yield Run II: 12622 ± 165 Run II+III 44936 ± 692 □ $J/\psi J/\psi$ yield per unit luminosity Run II ~93 events / fb⁻¹ Run III ~177 events / fb⁻¹

Run II+III *J/ψJ/ψ yield* is *3.6X* of Run II
Run II+III *luminosity* is *2.3X* of Run II

Signal and Background models

- Signal shape: Relativistic Breit-Wigner
- Background component: NRSPS+NRDPS+Comb+Feeddown+BW0

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B'_L(q, q_0, d)\right)^2,$$

- Non-interference model:
 - Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW1+BW2+BW3

$$Pdf(m) = \sum N_{X_i} \cdot |BW(m, M_i, \Gamma_i)|^2 \otimes R(M_i) + N_{NRSPS} \cdot f_{NRSPS}(m)$$
$$+ N_{NRDPS} \cdot f_{NRDPS}(m) + N_{Comb} \cdot f_{Comb}(m) + N_{Feedown} \cdot f_{Feeddown}(m)$$

***** Interference model:

Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW123 Interf. Term

$$\begin{split} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \text{ and interf}} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \end{split}$$

Run III interference fit result

Params [MeV]	M(BW1)	Г(BW1)	M(BW2)	Г(BW2)	M(BW3)	Г(ВW3)
Run III Interf.	6588 <u>+</u> 19	454 ± 74	6849 ± 12	136 ± 18	7179 ± 10	67 <u>±</u> 18

✓ Confirm Run II results with Run III data only---and with better precision!

Run II & III interference fit result

✓ X(6600), X(6900), X(7100) well above 5σ !

Run II & III interference fit result-detailed background components

Run II & III interference fit result

✓ Quantum interference among structures validated!
✓ Strongly imply that they have same JPC

Run II & III interference fit result

Dominant sources	Δm_{BW_1}	$\Delta\Gamma_{BW_1}$	$\Delta m_{\rm BW_2}$	$\Delta \Gamma_{BW_2}$	$\Delta m_{\rm BW_3}$	$\Delta\Gamma_{BW_3}$
Signal shape	25	52	2	11	3	5
NRSPS shape	3	7	<1	1	<1	5
DPS shape	$<\!\!1$	5	<1	<1	<1	1
Combinatorial bkg shape	$<\!\!1$	22	<1	2	<1	4
Feeddown	<1	1	<1	<1	<1	<1
Mass resolution	4	58	15	7	12	5
Efficiency	$<\!\!1$	4	<1	<1	<1	<1
Without BW ₀	<1	29	2	3	2	1
Total uncertainty	25	87	15	14	13	10

Params	M(BW1)	Г(BW1)	M(BW2)	Г(BW2)	M(BW3)	Г(BW3)
Run II&III Interf. [MeV]	$6593^{+15}_{-14}\pm25$	$446^{+66}_{-54}\pm87$	$6847 \pm 10 \pm 15$	$135^{+16}_{-14}\pm14$	$7173^{+9}_{-10}\pm13$	$73^{+18}_{-15}\pm10$
Run II Interf. [MeV]	6638^{+43+16}_{-38-31}	$440^{+230+110}_{-200-240}$	6847 ⁺⁴⁴⁺⁴⁸ ₋₂₈₋₂₀	191^{+66+25}_{-49-17}	7134_{-25-15}^{+48+41}	97+40+29

✤ VS. Run II result

- ✓ Statistical uncertainty reduced by a factor of 3
- ✓ Systematic uncertainty reduced by about a factor of 2

Outline

Output Institution

- **Spin-parity measurement**
- $\Box J/\psi\psi(2S)$ result
- $\Box J/\psi J/\psi$ updated result

□ Interpretations and summary

Mass trend: a radial family

Patterns among resonance mass

Regge trajectory for radially excited states defined as: $n_r = \beta \cdot m^2 + \beta_0$

 m^2 : mass square $n_r = n - 1, n$ is radial quantum number

Nucl. Phys. B, 966:115393, 2021,

Projection $n_r = 1:6241 \pm 20 \text{ MeV}$ $n_r = 5:7453 \pm 21 \text{ MeV}$ (no hint in data)

 Estimations by some diquark models:
 2++ production dominates over 0++ by more than two orders of magnitude.

> Closer to the spin-1 diquark trajectory

Additional trends

***** Patterns among other resonance parameters

$$\begin{split} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \text{ and interf}} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \quad Interf. \ pdf \end{split}$$

- Widths of three X states **show an exponential decrease**
- Similar pattern in Y(1S, 2S, 3S) radial family
- Different magnitude and steeper slope, may NOT a good example to compare

Width pattern

Exhibit compatibility with *a multiplicative scaling pattern among neighboring states*

★ Three structures X(6600), X(6900), X(7100) established with significances > 5σ

- Precision improved by factor of 3
- Having multiple states

==> Comparisons possible

• Quantum interference among structures validated with significances > 5σ

==> States have common J^{PC}

✤ Large mass splittings, more precisely, Regge trajectory

==> radial family of states

***** Implications:

- **Production threshold effects** (triang. sing.; coupled chan.; pomeron;...) creating "fake" peaks generally not expected to follow Regge trajectory
- Molecules not expected to form Regge trajectory
- Diquark-antidiquark in linear potential expected to follow Regge ...

Nucl. Phys. B, 966:115393, 2021, Zhu did this--CMS close to spin-1 diquark case for 0⁺⁺ and 2⁺⁺

• **Diquarks** may also explain decreasing widths:

wave function overlap decreases with radial excitation, tending to reduce widths?

CMS is painting a coherent picture of $J/\psi J/\psi$ structures

BACK UP

BACKUP

Kai Yi

Spin-parity: MC Tune

- We do not know the production mechanism
 - empirical model to reproduce p_T^X and p_z^X in data

- tune **Pythia** to match p_T^X in sideband and signal region

- fine-tune re-weighting p_T^X
- residual p_T^X and p_z^X consistency tests coverage in systematics

essential to model
 detector acceptance

Spin-parity: J/ψ polarizations

Spin-parity: J/ψ polarizations

- Symmetries:
- angular momentum: $|\lambda_1 \lambda_2| \leq J$
- identical J/ψ bosons $A_{\lambda_1\lambda_2} = (-1)^J A_{\lambda_2\lambda_1}$

Spin-parity: Lorentz-Invariant Amplitude

• Expect three X resonances to have the same tensor structure:

Spin-parity: Lorentz-Invariant Amplitude

• Expect three *X* resonances to have the same tensor structure:

$$A(X_{j=2} \rightarrow V_{1}V_{2}) = 2c_{1}(q^{2})t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}(q^{2})t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\nu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\nu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\nu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}}t_{\mu\nu}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}} + c_{4}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}f$$

$J/\psi J/\psi$: 6-15 GeV fits

Kai Yi

Observation of a family of all-charm tetraquarks

42

$J/\psi J/\psi$: Event selection for Run III data

Follow PRL cuts + A new trigger for Run III

□ Single muon:

- Soft muon ID
- $|\eta(\mu)| \le 2.4$

Gingle J/ψ :

- $2.95 < M(J/\psi) < 3.25 \, GeV$
- $prob_{vtx}(J/\psi) > 0.1\% \ M(\mu^+\mu^-)$ constrained to $M(J/\psi)$
- Final mass window cut for J/ψ candidate:

 $|M(\mu^+\mu^-)-M(J/\psi)|<3\rho\sigma$

G Four muons:

- 4μ charge should be zero
- $prob_{vtx}(4\mu) > 0.5\%$
- $prob_{vtx}(J/\psi J/\psi) > 0.1\%$

□ Multiple candidates treatment:

□ Trigger related (OR logic):

- HLT_Dimuon0_Jpsi3p5_Muon2
- Level 1 requirements: 3 muons
- $2.95 < M(\mu^+\mu^-) < 3.25 \ GeV$
- $p_T(\mu) > 3.5 \, GeV$
- HLT_DoubleMu4_3_LowMass [new trigger for Run III]
- Level 1 requirements: 2 muons
- $0.2 < M(\mu^+\mu^-) < 8.5 \, GeV$
- one muon $p_T(\mu) > 4 \text{ GeV}$ and the other $p_T(\mu) > 3 \text{ GeV}$
- $p_T(\mu^+\mu^-) > 4.9 \; GeV$

Baseline mass variable

– invariant mass of two constrained J/ψ candidates

• Select best combination from one 4μ candidate based on min.

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

• Keep duplicate combination if pairs have non-overlapping muons

A background suppression with FOM value:

S: number of X(6900) in signal MC B: number of background in data

 $S/(463/13 + 4\sqrt{B} + 5\sqrt{25 + 8\sqrt{B} + 4B})$

> $J/\psi\psi(2S)$ yield: Run II ~109 ± 14

 Run III ~281 ± 22
 ~2.6 X of Run II

Run II+III \sim 386 ± 26

***** Interference model:

Signal-hypothesis: NRSPS+NRDPS+Comb +BW23 Interf. Term

 $\begin{aligned} & Consider resolution and efficiency \\ & Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum \left(r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j) \\ & + N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{\text{Combinatorial}} \cdot f_{\text{Combinatorial}}(m), \end{aligned}$

Observation of a family of all-charm tetraquarks

 $p_{T}(J/\psi) > 11.0 \text{ GeV}$ $p_{T}(\psi(2S)) > 13.5 \text{ GeV}$ $p_{T}(\mu_{\text{in}} \psi(2S)) > 2.5 \text{ GeV}$ $\mu_{\text{in}} \psi(2S) \text{ ID: Loose muon}$ Mass window for J/ψ and $\psi(2S)$: 2.5 σ window

- Hypothesis test for $j = 0^- vs \ i = 2_m^+$
 - 2D parameterization:

 $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu}) \quad 0^- \operatorname{vs} 2_m^+$

• Test statistic:

 $q = -2\ln(\mathcal{L}_{J_j^P}/\mathcal{L}_{J_i^P})$

• Confidence level:

$$CL_{s} = \frac{P(q \ge q_{\text{obs}} \mid J_{j}^{P} + \text{bkg})}{P(q \ge q_{\text{obs}} \mid J_{i}^{P} + \text{bkg})}$$

Z-score

0.2

Observed

p-value

 4.2×10^{-1}

 2.7×10^{-13}

 0^{-}

 2_{m}^{+}

Expected

Z-score

7.4

0.0

p-value

0.50

7.2 6.5×10^{-14}