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Scattering Amplitudes: Bridge the Bap between Experiments and Theories

Scattering Amplitudes
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Typical tree and loop Feynman diagrams

In perturbative QFTs, scattering amplitude 1M can be expressed in terms of

tree Feynman diagrams

one-loop Feynman diagrams
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two-loop Feynman diagrams / ii:;}\ / g \

three-loop Feynman diagrams
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Tree Feynman diagrams for ete™ — putp~
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Fig. 2. Lowest-order diagrams for e*e™ »pu ™.
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One-loop Feynman diagrams for ete™ — putu= (1)
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One-loop Feynman diagrams for ete™ — putu™ (2)

. y vertex:
4" self-energy:  Feynman diagrams at one-loop level (cont.)
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Complexities and Calculation methods

Complexities

o MUCH MORE one-loop Feynman diagrams due to more external legs.

For gg — ggggg process in pure Yang-Mills theory, there are 2 485 (~ 102) tree Feynman
diagrams, and 227 585 (~ 10°) one-loop Feynman diagrams.

o EXTRA complexity due to finite temperature and finite density.
Feynman diagrams calculation in relativistic QFTs at finite temperature and finite density.

(K Eei)

Conventional method: Efficient method:
To calculate ONE by ONE (FL#5) | To calculate ONCE for ALL (3&<ENkl)

Hfit) b a few
GHJE) 12: time-consuming

CHiit) %: a great many

GHEJE) PR: time-saving

(Jfifit) 4F: correctness-guaranteed
(HA) 4+ reusable

(Jfifit) %: error-prone

(A #%: disposable
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Efficient methods

Efficient method at zero temperature and zero density

Based on the Lorentz symmetry (continuous spacetime symmetry)

The Nobel Prize in Physics 1999

archi archive.

Ger:rdus 't Hooft Martinus J.G. Veltman
Priseshre: /2 Pizeshre: /2
@ L.M. Brown and R.P. Feynman, @ G. ‘'t Hooft and M.J.G. Veltman, Scalar one-loop integrals,
Radiative Corrections to Compton Nucl. Phys. B 153, 365 (1979).

ttering, Phys. Rev. 231 (1952).
SeRE T, s v ), 261 (1262) @ G. Passarino and M.J.G. Veltman, One-loop corrections for

eTe™ annihilation into T ™ in the Weinberg model, Nucl.
Phys. B 160, 151 (1979).

V.

Efficient method at finite temperature and finite density
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An observation from typical one-loop Feynman diagrams in QED (1)
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Two-point one-loop Feynman diagram: two square brackets.
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An observation from typical one-loop Feynman diagrams in QED (2)
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Three-point one-loop Feynman diagram: three square brackets.
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A further observation from typical two-point one-loop Feynman diagrams in
relativistic QFTs

Autrim) = | o7
Bo(p1;m1;ma) = / i:DDL [12 —m?] [(ll—i-pl)2 —m3]’
A" (pima) = / i:DDﬁz [+ p)lz —-m3]’
BLPP7Y (primysma) = / Z:Zﬁz [z - mﬂ{l[p(’ll-:l;fﬁ —-m3]’
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An even further observation from typical one-loop Feynman diagrams in

relativistic QFTs inlcuding gravitons
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Generic one-loop Feynman integrals at zero temperature and zero density

{ — 05, AT, —jesTH, . .. }
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where the one-loop scalar Feynman integrals (OLSFls) at zero temperature
and zero density

_ dP1 1
domimo = [ o557 [P —m3]’
I — o dPl 1
oorsmaima) = [ 557 [ —m2] [((+p1)? —m3]’
dP1 1

Colpr, p2;ma; masm =/. ,
0(p1, p2;m1;ma;ms) D2 12— m2] [+ p1)2 — m3] [(L + p1 + p2)2 — m3]

are Lorentz invariant, and the one-loop tensor Feynman integrals (OLTFIs) at zero temperature and zero density

i) = [ o
ymy) = A s
p 1 iwD/2 [(l +p)2 _ m%]
- dPi {1°,1°17}
AL Sma;m :/ > ,
(p1; m1;m2) D72 2 — m2] [(L + p1)? — m3]
dP1 {17,1°19,1P1°17 }

G T (p1, payma;masm :/‘ '
(propaimaimaima) = | 5ob7m [ 2] [+ p1)® — m3] [0+ p1 + 72)® — 73]

are Lorentz covariant and symmetric for ranks » > 2. After integrating over internal momentum [, the tensor
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n in a nutshell (1)

and zero de

Based on the Lorentz covariance (continuous spacetime symmetry), the Lorentz-covariant OLTFls

(a0, 30, 807 60,407,777, )
~ {p’ﬂp‘f,pé’,--‘ 977, 00T, (PYPS + PhpT), Php3. -+,
(P29 +p797" +p19°7), (P59°7 + 397" +p3977),
pipTpl, (PUpT P + pIpips + Pipips) , (PYPSP3 + P PIDs + PIPEDS ) , PEPS DS, - - - }

can be expressed as a linear combination of master integrals

L1, B1,Gu,Cor 2 Booy By Coos Gy Cras -+ Cont CoonsCrn iz -} v { oy Bos o ).
Y

Step-2: Calculate master integrals at zero temperature and zero density

The master integrals A, Bo, Co, - - - are nothing but the Lorentz-invariant OLSFIs and had been analytically

calculated, say, in “G. ‘t Hooft and M.J.G. Veltman, Scalar one-loop integrals, Nucl. Phys. B 153, 365 (1979)".
v

As a consequence, the one-loop Feynman diagrams in relativistic QFTs at zero temperature and zero density

{—ii,iﬁ“”,—ie&f“,u} ~ {AO,BO7C~U,~~~ wz%%%’%}

~ {Ao,éo,c}),.‘.}.
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Passarino-Veltman reduction in a nutshell (2)
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A brief summary of PVR
RQFTs At zero temperature and zero density At finite temperature and finite density
EMs PVR 7
LS with ?
OLSFIs LL: A, Bg,Co, - 7
OLTFIs LC: /P, %P, BP%,€P, 6P, 6P, .- 7
TSs LC 7
MIs LL: Ag, Bg,Co, - 7
Relativistic QF Ts (RQFTs), Efficient Methods (EMs), Lorentz symmetry (LS),
One-loop scalar Feynman integrals (OLSFls), One-loop tensor Feynman integrals (OLTFls),
Lorentz-invariant (LI), Lorentz-covariant (LC), Tensor structures (TSs), Master integrals (MIs).

Hao-Ran Chang (Sichuan Normal Universit Reduction for OLFIs in the RQFTs at FT and FD 17/



Outline

@ Introduction and Motivation

© From Passarino-Veltman reduction to Generalized Passarino-Veltman reduction

o Gereralized Passarino-Veltman reduction (GPVR)

© Summary and Outlook

(Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD



Generic OLSFIs at finite temperature and finite density

{ — 0%, iTT*Y, —jesTH, . . . } Lipitm
s
~{ A0 Bo,Coy oot B BT 60,6760
1
Generic OLSFls in relativistic QFTs at finite temperature and finite density mi g e

Au(p;mum;ﬁ)
,/ 1
mD/? (104 p° + )2 = [+ p)2 +m3]’

Bo(p1;mi, p1;ma, pa; )

dPi 1
= / inD/2 {10+ p1)2 — [12 4+ m3]} {10+ p0 + p2)2 — [(L+py)2 +m2]}’

Co(phpz;ml,m;mmuz;ms,us;B)
,/ 1
mD/? {00+ p1)2 = 12 +m3] } {00 + Y + p2)? = [+ py)? +m3]}
1
X »
{0+ P9 + 95 + 13)? = [(L+ Py +p2)2 +m3]}
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Generic OLTFlIs at finite temperature and finite density

Generic OLTFIs in relativistic QFTs at finite temperature and finite density
A (p;ma, pa; B)

_/ dP1 1
= iwD/2 (19 4 pO + )2 — [(ler)z +mﬂ’

BT (primay, i ma, p2; B)

7/ dPi {1, 1717}
P2 {0 4 pa)? = [P+ mi] {00+ 09+ p2)? — [+ py)? +m3] )

<5{’)””””7}(1)1,zoz;mum;mz,uz;mwt:s;ﬁ)
/ {1°,1°1°,1°1°17 }
wD/? (104 p1)? = [12+m3]} {0+ p§ + p2)? — [U+p1)2 +m3]}
1
X B
{0 +pY +p9 + 13)2 — [(L+ Py + P2)2 +m3]}

@ Finite densities 1, are introduced via i{0g — 19y + fiq-

i(znf%)”, fermion,
@ Finite temperature 7T is introduced via [° — iw, = with 3 =1/(kpT).
i%T", boson,
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Challenges and Countermeasures

In relativistic QF Ts at finite temperature and finite density,

@ No Lorentz invariance due to a rest reference frame of the many-body system in which the temperature
and density are measured.

@ The continuous spacetime symmetry is spatial SO(3) symmetry rather than spacetime SO(1, 3) symmetry.

@ In line with the habits of high-energy theorists, we prefer to work with Lorentz-covariant tensors.
@ The Lorentz-covariant tensors are incomplete to expand the one-loop tensor Feynman integrals.

@ Introduce a constant vector ©” = (1,0, 0,0) in momentum space, whose spatial momentum is zero, to
denote the rest reference frame.

@ Construct a complete set of (symmetric) tensor structures by combining Lorentz-covariant tensors with
this constant vector.

Hao-Ran Chang, Phys. Rev. D 110, 016022 (2024)

Finite-Temperature Field Theory
Principles and Applications

JOSEPH L KAPUSTA
Schou of Physics and Asromorny, University of Minnesota
CHARLES GALE
Degartment of Phamic, McGl Universty

The propagator, its inverse, and the are all symmetric
second-rank tensors. Assuming rotational invariance (which would not
be correct for a solid) the most general tensor of this type is a linear
combination of g, kuky. weu,. and kyu, + kyu,. Here w, = (1, 0, 0, 0)
specifies the rest frame of the many-body system. Taking into account

v

n

In the vacuum there is no preferred rest frame, so the vector u,, cannot T
play any role (it is not defined). Also, in the vacuum T must be propor- e g
tional to g" — k“k”/k%; hence F = G. Furthermore, G can only depend - ‘ﬂb* (¥ /!
on k2. At finite temperature and density, and G can depend = qee—

0 T
on K =u-k and |k| = /(u- k) ely, owing to the lack of d i
Lorentz invariance. :‘ o
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Step-1 in the GPVR (1)

To reduce tensor integrals to master integrals at zero temperature and finite density:

o (p;my, pr; B) = p© A
+ u’As,

B’ (p1;ma, p1s ma, po; B) = piB
+ u”Ba,

B (p1;ma, pis ma, pa; B) = g7 Boo + pipy B
+ (p{u” + pJu”) Bz + v’u” Baa,

€" (p1,p2; M1, 1 ma, pa; ms, ps; ) = piCi 4+ phCs
+u”Cs,

C"7 (p1,p2; M1, pr1sma, po;ma, p3; B) = g°7 Coo + pipT i1 + (PS5 + pTp5) Cio + pip3 Can
+ (pfu” + pJu”) Ciz + (phu” + pgu’) Cas + u”u’Css,
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Step-1 in the GPVR (2)

G"77 (p1, p2; M1, p13ma, pa; ms, u3; )
= (Pg”" + 079" +p19°7) Coos
+ (p59°7 + 1397 +p39°7) Cooz
+pipTpiCii + (P77 PS5 + TIPS + p1pips) Ciio
+ (p{p5p3 + pTpP3P5 + PIP5P3) Cioo + PP pgCono

+ (UPQGT +u’g"" +ug” )Coog

+ (pipTu” + pIpiu’ + pIpiu’) Ciis

+ (php5u” + pgpsu” + pipsu”) Coos

+ [pf (p5u” +p3u”) +p5 (PTu” +pTu”) +u” (p7p3 + p1p3)] Ci23
+ (plu”u” +plu’u” 4+ piu’u”) Ciss

+ (pz’u, u” 4+ pg’u,puT —+ p;u,/)’u,n) Cass

+ u’u’u" C3ss,

The form factors can be expressed as a linear combination of master integrals as
{,—l\,b‘\ ,C1,Ca2, -+, Boo, B11,Co0,C11,C12,C22, -+ ,Coo1,Co02,C111,C112, C122,C222,- - -,
Az, B2, C3, B12, B22,C13, C23, C33, Coos; C113, C223, C123, C133, C233, C333, - - - }

~ {40, Bo,Co, oo, 2%, 8%, 6°, €%, €°°, . }.
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Step-2 in the GPVR (1)

To calculate master integrals at finite temperature and finite density:

dPi 1
inP/2 (10 +p° + 11)? = [(L+p)? +mi]’
Bo(p1;mi, pisma, p2; B)

AU(P?"'nhMl;/B):/

dP1 1
B / inP/2 {10 + p1)? = [12 4+ mP] } {(1° + P9 + n2)? = [(L+p1)2 +m3]}’
Co(p1, p2;ma, pu1;ma, po;ms, p3; 3)

dP1 !
- / iwD/2 {10 + p1)2 — [12 + m2]} {(1° + p + n2)? — [(I + py)2 + m3]}
1
y ,
{0+ 99 + 93 + 13)? = [(L+py +2)2 +m3] }
B0 (pyyma, iy ma, pa; B)
_/ dP1 {2,100
P2 {0 4 p)? = [P+ mi] {00+ P04 p2)? — [+ py)2 +m3] Y

P1,P2; M1, [11; My, fo; M3, 13; B)

<g{o,oo,oom(

_/ dP1 {1°,1°1°,1°1°1°}
) awP/2 {10 4 )2 = [12 4+ m3] {0 + 99 + p2)? — [(L+py)? +mi]}
1

X .
{@° 499 + 93 + 13)2 — [(L+ Py +P2)? + m3]}
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Step-2 in the GPVR (2)

To calculate these master integrals, one can work in the imaginary time formalism, where

iW’ fermion,

0 ) Foo d

" —iw, = / —fl )H E fiwy),
i3, boson, i 'LWn

formn=0,4+1,+,2,--- ,+o00and 8 =1/(kpT).

In relativistic QFTs at finite temperature and finite density,

Calculation of scalar master integrals

@ P. Rehberg and S.P. Klevansky, and J. Hiifner, Phys. Rev. C 53, 410 (1996),
Hadronization in the SU(3) Nambu-Jona-Lasinio model. A, By, and Cq

@ P. Rehberg and S.P. Klevansky, Annals of Phys, 252, 422 (1996),
One Loop Integrals at Finite Temperature and Density. Ay, Bo, and Cp

@ A.S. Khvorostukhin, Acta Physica Polonica B, 52, 1303 (2021), arXiv:2011.14596,
Calculation of the one loop box integral at Finite Temperature and Density. Dy

for fermionic internal lines.

Calculation of tensor master integrals

@ Tensor master integrals (350, B0, 6°,€¢°°, 6%, . ..) have not yet been analytically calculated

for fermionic and bosonic internal lines.
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Take-ho

message of GPVR (1)

In relativistic QF Ts at finite temperature and finite density, the one-loop Feynman diagrams

{ — 4%, 4TI, —iesTH . .. } ~ {Ao,Bo.c“, AP BB G PP, }

Based on the residual symmetry [ SO(3) ], the non-Lorentz-covariant OLTFls
{a?, 7, 27 6" 677 6077, }
~ {pp,pi’,péw' .97, pipT, (PP + P57 ), PEDS, - s
(79" +p79"" +p79°7), (05977 +p597" +p39°7),
pipTpl, (p7pTps +pipIps + pipip3) , (PYPS D3 + PIP3ps + PIPhDPS) s PEDPI DS, - - -
u’, (p’l)’u,(T +p‘17’u,p) s (]ogu(r +pg’u,p) seeeyufu e
(w9’ +ug™? +u" g7, (pipTu” + pIpiu’ + pIpiu’), (pSpsu” + papiu’ + pIphu’),
(Pruu” +pTuu’ +prulu”) [pf (P5u” +p3u”) +p5 (pTu” +piu’) +u” (73 +pip3)],
(p‘fu,duT +pJuu” +p71'upug) s (pz”uauT + poufu’” + p;u'uua) suluu’ }
X {-'—h,l"u(?u(r:,' -+, Boo, B11,Co0,C11,C12,C22,- -+ ,Coo1,Co02,C111,C112, C122,C222, - - -

A2752,C3,512752276137(3237(333,(3003,C113,C223,C123,C133,C233,C333,'"}~
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Take-home message of GPVR (2)

The form factors are non-Lorentz-invariant, and can be expressed as a linear combination of OLSFIs and
one-loop purely-temporal tensor Feynman integrals as

{,-h,/.«‘\,m,(’g,u‘ , Boo, Bi1,Co0,C11,C12,C22, -+ ,Co01,Co02,C111,C112,C122,C222, -+ ,
A2752763,51275227C137C237633,C003,C113,C223,C123,C133,C233,C333,'"}
-~ {AO,BU,CU,~~~ ,@0,,%00,%0,%00,%000,"-}4
As a consequence, the one-loop Feynman diagrams
{ =iz m, —iesr?, -} ~ {40, Bo,Coy oo ”, B0, 807,60, 607 60T
~ {40, Bo,Co, - B0, B, 6°, 6, 6°°, ... .
A PRI ¥ I B

A brief comparison between PVR and GPVR

RQFTs At zero temperature and zero density At finite temperature and finite density
EMs PVR GPVR
LS with without
OLSFIs LI: Ay, Bg,Co, - Non LI Ag, Bg,Co, -
OLTFIs LC: ofP, BP, BPT,€P,€P°,€P°T, - .. Non-LC: ofP, BP, BPT , €P,€P°,€P°T, ...
TSs LC Non-LC (u”) and LC
MIs LI: Ag, Bg, Cq, - - - Non-LI: Ag, Bg,Cq, -, BY, 890, ¢0, €00, 000 ...

Relativistic QF Ts (RQFTs), Efficient Methods (EMs), Lorentz symmetry (LS),
One-loop scalar Feynman integrals (OLSFls), One-loop tensor Feynman integrals (OLTFls),
Lorentz-invariant (LI), Lorentz-covariant (LC), Tensor structures (TSs), Master integrals (Mls).
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The first demonstration application of GPVR

After decomposition and combination by hand, the one-loop pseudoscalar polarization function in the
Nambu-Jona-Lasinio model can be expressed as

—iﬂl;?/(k;mf,uf;mf/,uf/;ﬁ)
dflt st {y° [1Pyp + pgvo + mel Y (17 — k7)o + ppryvo + mypr] }
c
[0 4 pp)? =12 = m3] [0+ K0+ pup)? = U= k)2 —m?, ]

iN.
32 {Ao (05mp,pup; B) + Ao (0smpr, pugr; B)
2 0 2 2

+[(mf — mf/) — (k + oy — uf/) —k ]Bo (k;mf,,u,f;mf/,p,f/;ﬂ) . (1)
P. Rehberg and S.P. Klevansky, and J. Hiifner, Phys. Rev. C 53, 410 (1996),
P. Rehberg and S.P. Klevansky, Annals of Phys, 252, 422 (1996).
In the spirit of tensor reduction, the one-loop pseudoscalar polarization function can also be expressed as

. S

— zH?f,(k;mf,p,f;mf/,pf/;ﬂ)

— 4iN, BP7 (k- . . B (k- . k°

= amz e ! (ksmyp,ppsmpr, ppr; B) — B° (ksmyp, ppsmer, ppr)

+ 9008 (ksmyp,pgimpr,ppr; B) (g +ppr) — gpok”Bo (kimyg, ppsmyr, pgr; B)

+(ufuf/—mfmf/)80 (k;Mf,uf;mf/,uf/;ﬂ)}. 2)
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The second demonstration application of GPVR (1)

In terms of two one-loop tensor Feynman integrals &” (q; m, p; m, p; 8) and B°° (q; m, p; m, p; B), and a
one-loop scalar Feynman integral By (q; m, u; m, p; 3), the one-loop vacuum polarization in the D-dimensional
QED can be recast as

aby tr {"/A (1PYp + vo +m] 7 [(17 + ¢7)ve + w0 + m]}
@mP [0 + ) — 2 = ma] [0 + 0 + 1% = @+ @)% — 2]

A (g m, s m, p; B) = —62/

—4ie? T T T o o
= amypz {597 = 9" 900 + 997, | [#°7 (@ m w3 mo 13 8) + 2 (@5 m, 13m0, 115 8)a” |
+ 1 [gAPgTO -9 gp0 + gkogfp] [Zg?p(q; m, w;m, p; B) + q° Bo(gq; m, s m, p; ﬁ)]

+[2u29xogTo + (m® — uz)gh]Bo(q; m, ;i m, p; /3)} .

The analytical result after utilizing GPVR automatically satisfies the Ward identity
41177 (¢; m, psm, p; B) = 0. (3)
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The second demonstration application of GPVR (2)

From explicit analytical expressions of T17% (¢°, |g|, i) at zero temperature and finite density in
Phys. Rev. B 97, 075202 (2018),
o 11°°(¢°, |ql, p):

Plasmon: Jianhui Zhou, Hao-Ran Chang, and Di Xiao, Phys. Rev. B 91, 035114 (2015).
o I (¢ |ql, p):

Diagonal elements: 6;;117 (¢”, |ql, 1)
Plasmon and Optical conductivity: A. Thakur, K. Sadhukhan, and A. Agarwal, Phys. Rev. B
97, 035403 (2018).

Optical conductivity: Phillip E. C. Ashby and J. P. Carbotte, Phys. Rev. B 89, 245121
(2014).

Asymmetric part of off-diagonal elements: z—:ijkl'[ij (q°,1ql, 1)
Chiral magnetic conductivity: D.E. Kharzeev and H.J. Warringa, Phys. Rev. D 80, 034028

(2009).

o 11%(q°, |q|, ) and TI7°(¢°, |ql, p):
S. Ghosh and C. Timm, Phys. Rev. B 99, 075104 (2019).
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The second demonstration application of GPVR (3)

From explicit analytical expressions of 1177 (¢°, |q|, 1) at zero temperature and finite density in
Phys. Rev. B 97, 075202 (2018),

e T177(¢°, |q|, 1) under the hard dense loop approximation (where ¢, |q| < p) :
Dam Thanh Son (%7 1l1) and Naoki Yamamoto, Phys. Rev. D 87, 085016 (2013).

ICTP Dirac Medal 2018

Congratulations to:

o Chiral Plasma Instabilities:

Yukinao Akamatsu and Naoki Yamamoto, PRL 111, 052002 (2013).
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Summary and Remark

@ The most significant in the reduction for one-loop tensor Feynman integrals is to construct a complete set
of tensor structures based on continuous spacetime symmetry.

@ In relativistic QFTs at zero temperature and zero density, the Lorentz symmetry is respected.
Consequently, the tensor structures are Lorentz covariant and the master integrals are Lorentz invariant.

@ In relativistic QFTs at finite temperature and finite density, the Lorentz symmetry is broken.
Consequently, the Lorentz-covariant tensor structures are incomplete and the master integrals are not

Lorentz-invariant any longer.

@ A complete set of (symmetric) tensor structures can be constructed by combining the constant vector
u” = (1,0,---,0) with Lorentz-covariant tensors, where ©.” in D-dimensional spacetime denotes the
rest reference frame due to finite temperature and finite density.

@ The reason for introducing this extra constant vector ©” = (1,0, - ,0) to the Lorentz-covariant tensors
here is similar to that for imposing a gauge condition to the eletromagnetic field A,,.

@ At finite temperature and finite density, the purely-temporal tensor master integrals
B°, B €V, €°°,€°°°, ... must be introduced, and all the master integrals are non-Lorentz invariant.

@ GPVR goes back to PVR after artificially removing terms containing «” and simultaneously setting
e = 0 and T = 0. The constant vector u” is not defined at zero temperature and zero density.
According to the third law of thermodynamics zero temperature is qualitatively different from finite
temperature.

@ Both GPVR and PVR are valid for tensor Feynman integrals in relativistic QF Ts at finite temperature and
finite density when D > (1 + 1).
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@ Reduction up to N-point one-loop tensor Feynman integrals.

@ Generalization to multi-loop tensor Feynman integrals
“Auxiliary mass flow method” (Yan-Qing Ma).

@ Generalization to more efficient reduction than GPVR:
Incorporating Effects of finite temperature and finite density with
“Improved PV-reduction method with auxiliary vector” (Bo Feng).

® Generalization to gther energy-momentum relations:
Pseudo-relativistic QF Ts: E(p) = ++/p?v2 + A2 V.S. E(p) = £v/p?c? + m2ct
Non-relativistic QF Ts: E(p) = % (V. Shtabovenko).

o Generalization to nonequilibrium processes.
NSRRI Proteesss

@ Generalization to AdS/dS spacetime (Bo Feng).

o Computer program packages for automatic algebraic calculation.
Calculation of scalar master integrals for purely boson internal lines:
(£/6) (f/b) A(f/b) (f/b)
Ag » By Co Dy v
Calculation of tensor master integrals for purely fermion/boson internal lines:
0 #0:00  £0;00;000 ,0;00;000;0000
Doy Pisey Cisrny 0 2 m) '
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Thanks for your attention !
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Contribution of finite temperature and finite density

Let us evaluate the photon self-energy at the one-loop level. From

(5.40),
v or [P (L
=Ty ot (i ) 6

Here p° = (20 + 1)7T% + p and k° = 2n7Ti. We can always write " =

T + Hmat‘ where
. = hm I (5.50)

vac

,Ho

is the vacuum self-energy and I1%., is the remainder due to the presence of
matter. The vacuum part is discussed in many textbooks on field theory,
such as Peskin and Schroeder [2]. The matter part is readily evaluated:

2 00 2 0 _AR2 _ 12
00 e dpp® AEpk" — AEf — k Ry
i, = 5 Re [~ BNy 14 B (

2m> + k2 (R4
W, = 25 Re / _Nb { Al m(ﬁ)]

Here

(5.51)

w = k| k7:k57w2 E, = \/p?+ m?
o 1 1
Nel) = G 1t om 1

Ry = k* — 2k B, + 2pw

Josehp I. KAPUSTA and Charles GALE, Finite-temperature field theory: Principles and Applications.
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Reducing form factors to master integrals at zero temperature and zero

density

After integration over [, Lorentz tensor index p of ¥ must be inherited by a complete set of rank-one Lorentz
tensor. In the present case, the Lorentz tensor has no choice but to be pf. As a result,

/ dP1 i
iwP/2 [12 — m2] [(I + p1)? — mZ]

Contracting p1, with the left-handed side of B (p1;m1;ma) gives rise to

= 2°(p1;m1;ma) = pi B (p1;ma; ma). (4)

0 )= / dP1 p1 -l
P T ] R [ = ] [ p)? = ]
{<z+m>2 2}—[z2—mf]+<m§—mf—p$>}
_/WD/2 [12 = m3][(l + p1)? — m3]
Ao (0; Ao (0; 2 _m?
_ o(2m1) _ 0(27”2) n (mz ”;1 )BL) (p1;mi;ms). (5)

Contracting p1, with the right-handed side of BBP (p1;m1;my) gives rise to
P1pB” (p1;mi;ma) = p1ppt Bi(pr;ma;ma) = p; 531 (p1;ma;ma). (6)
From the above two equations, the form factor /3, can be expressed in terms of Ay and By as

~ Ao(0;my) — Ag(0;m m2 —m? —p?) . .
Bi(p1;mi;me) = o 1)2p2 o 2)+( : 2p21 pl)Bo(Pl;ml;m’z) ~ {Ao,Bo}. (7)
1 1
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Reducing form factors to master integrals at finite temperature and finite

density

After integration over [, Lorentz tensor index p of I” must be inherited by a complete set of rank-one Lorentz
tensor. In the present case, the tensor structures have no choice but to be p{ and u”. As a result,

@”(m;mhm;mz,uz;ﬁ) = p{B1(p1;ma, p1;ma, pa; B) + u” Ba(pr; ma, pa; ma, pa; B)

1”
= . 8
S AR (e ey ¥ (Ll (B Ry ©
Contracting p1, and u, with both sides of %” (p1;m1, pu1; M2, p12; 3) gives rise to
pP1-pP1 p1-u B p1p B F1
- = : ©
u - p1 U U Ba w, B’ Fa
where
Ao (05 ma, pi; B) — Ao(0;ma, p2; 8
Fi=p1p,8° = 00, iy )2 00 ma, 2 B) = (2 — 111)2° (p1s ma, pa; ma, pi2; B)
2 2 2
my — (M7 — p2 +p
+ 2 (my ) 2[( 0’ - }B(J(plymlu#hm%ﬂ%ﬁ)
Fo = u, B = B (p1;ma, prsma, p2; B). (10)
The form factors can be expressed as a combination of A, By, B0, namely,
B
~ {A07Bo,=@o}- (11)
B2
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Comparison between zero and finite

At finite temperature and finite density,
L%p(PIle»ﬂl?m%#Q;ﬁ) = piBi(p1;ma, p1;ma, po; B) 4+ u” Ba(pr; ma, pi; ma, pa; B)
1

; mD/2 {00+ 12 = 2 +mi] {0 + 1§ + p2)? = [+ p1)2 +m3]}

pP1-pP1 p1-u B D1, PB” Fi
= = s
u - p1 U U Ba w, B Fo
where
Ao (0;ma, p1; B) — Ao (0; ma, pa; B)
Fir=p1p, B = e 3 L (s — 1) B (prs ma, s ma, i )
2 2 2
m3 — (m} — ®) = [(p2 +pY)*

+ 2 ! [ ! JBU(P17m17/L1»m27/t27[3)7

2
Fo=u,B° = B°(p1;ma, pisma, pz; B).

Directly setting 1, = 0, 8 = oo and artificially removing terms containing ., can give rise to the expression at
zero temperature and zero density,

dPi 1°
iwDP/2 [12 — m2] [(I + p1)? — mZ]

B (p1;m1;ma) = Py 531 (p1; m1;m2) =/

)

where

Ao (0;m1) — Ao (0;m2) N m3 —m}

2
—p?

B ;my;ma).
37 202 o(p1;m1;m2)

Bi(p1;mi;ma) =
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Alternative GPVR (1)

In relativistic QF Ts at finite temperature and finite density,

@ The continuous spacetime symmetry is spatial SO(D — 1) symmetry rather than spacetime SO(1, D — 1)
symmmtry.

@ Only the reduction for the spatial component(s) of one-loop tensor Feynman integrals are needed.

@ The Lorentz-covariant tensors are over-complete to expand the one-loop tensor Feynman integrals.
@ A complete set of tensor structures can be constructed based on SO(D — 1) symmetry.

@ Treat the spatial components in the FIRST GPVR just as the temporal-spatial components in the PVR.

Jianhui Zhou and Hao-Ran Chang, Phys. Rev. B 97, 075202 (2018)
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Alternative GPVR (2)

Based on the SO(D — 1) symmetry, a complete set of (symmetric) SO(D — 1)-covariant tensors are
constructed to expand the one-loop spatial tensor Feynman integrals.

o (p;ma, p1; B)

_/ dP1 I
T J P2 (10 + p0 + p1)? — [(L+ p)? + m2]
= —p'Ao(0;m1, p1; B),

B (p1;ma, prsma, po; B)
l'i
*/mw{lwm)’-’ (22 +m3]} {0 + P9 + n2)? — [(L+py)% +m3]}

= p}Bi(p1;ma, p1;ma, p2; B),
B (p1;mu, 1y ma, p2; B) = B0 (p1;ma, p1;ma, po; )

dPi 1°r
= | o = @ A [ e )
= p} Boi (p1;ma, p1;ma, p2; B),
%ij(m;mum;fm,uz;ﬂ)
/ 19
mD/Q (104 p1)2 = [12+m3]} {0+ p§ + p2)? = [A+p1)? +m3]}

= —0Y Boo(pr;mu, g1y ma, pa; B) + pipi B (prsma, pis ma, pz; B),

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD 41



Alternative GPVR (3)

€" (p1,p2; M1, 1 ma, po; ms, pa; B),

01 0
€ (p1, p2; M, 15 M, posma, pa; B) = €0 (p1, p2; ma, p1; ma, pa;ma, 3 8),
" (p1, p2; ma, p1; ma, pa;ms, ps; ),

00i 0i0
€ (p1, p2;ma, p1s ma, p2sms, ps; 8= € (p1, p2; ma, g1 me, plo; ms, pa; 3)

00
=€""" (p1, p2; M1, p1; M2, pa; M3, p3; B),

€ (p1, p2;ma, 1y ma, payms, ps; B) = €77 (p1, pas ma, pa; ma, pos ms, ps; B)
=6 (p1, p2; m1, p1; ma, p2;ms, ps; B,

-
E " (p1, p2; ma, g1 ma, p2; ms, p3; B),

@ Too many generic one-loop tensor Feynman integrals.

@ Not in line with the habits of high-energy theorists.
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