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Scattering Amplitudes: Bridge the Bap between Experiments and Theories

Scattering Amplitudes
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Typical tree and loop Feynman diagrams

In perturbative QFTs, scattering amplitude iM
::

can be expressed in terms of

tree Feynman diagrams

one-loop Feynman diagrams
(�M/��ç��e)
(Í�eE�Å�Æ�)

two-loop Feynman diagrams

three-loop Feynman diagrams

Figure 2: Sample diagrams contributing to F1 and F2 at one and two loops. Solid, curly
and wavy lines represent quarks, gluons and photons, respectively.

3 One- and two-loop form factors

Let us in the following briefly outline the main steps of the two-loop calculation. Sample
Feynman diagrams contributing to F1 and F2 can be found in Fig. 2. After generating
the amplitudes we find it convenient to define one integral family at one and four integral
families at two loops. We use FIRE [19] in combination with LiteRed [20, 21] for the
reduction to master integrals within each family. After minimization we arrive at two and
17 master integrals at one- and two-loop order, respectively. For convenience we show the
two one-loop and one two-loop master integrals explicitly in Fig. 3(a), (b) and (c). The
remaining 16 two-loop integrals are obtained from 3(d) by reducing lines or adding dots
according to

G(0, 0, 0, 1, 0, 1, 0), G(0, 0, 0, 1, 1, 1, 0), G(0, 1, 0, 1, 1, 0, 0),

G(0, 1, 0, 1, 2, 0, 0), G(0, 1, 1, 0, 0, 1, 0), G(0, 1, 1, 0, 1, 1, 0),

G(0, 1, 1, 1, 1, 0, 0), G(0, 1, 1, 1, 1, 1, 0), G(0, 1, 1, 1, 1, 2, 0),

G(1, 0, 0, 1, 0, 1, 0), G(1, 0, 0, 1, 1, 1, 0), G(1, 0, 0, 1, 1, 2, 0),

G(1, 0, 1, 1, 0, 1, 0), G(1, 0, 1, 1, 0, 2, 0), G(1, 1, 1, 1, 1, 1, 0),

G(1, 1, 1, 1, 1, 2, 0) . (8)

In the large-Nc limit only ten master integrals are needed at two loops.

We evaluate all one- and two-loop master integrals analytically and expand in ǫ up to the
order needed for the ǫ4 and ǫ2 terms of the one- and two-loop form factors, respectively.
Our results are expressed in terms of Goncharov polylogarithms (GPLs) [22] with letters
−1, 0 and +1. We compared the ultraviolet-renormalized two-loop form factors to Ref. [10]
and find agreement including order ǫ1 up to the discrepancy in F1 already discussed in
Section 4.4 of Ref. [2], see also Ref. [12] where agreement with our result is found. The
order ǫ2 terms of F1 and F2 have recently been published in Ref. [12]; our results agree
with theirs. Note that the large-Nc limit of our result for F1 has already been published
in Ref. [11]. In this paper the ǫ2 terms have been used to derive higher-loop corrections
with the help of renormalization group techniques. Apart from that, the ǫ2 terms also
enter a future four-loop calculation of the massive form factors.
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Figure 3: The two one-loop master integrals are shown in (a) and (b). One of the 17 master
two-loop integrals is shown in (c) and the remaining 16 master integrals are obtained from
(d) as described in the text. Solid and dashed internal lines correspond to massive and
massless scalar propagators. Thin external lines are on the mass shell and thick external
lines carry the (off-shell) momentum q.

Figure 4: Sample diagrams contributing to F1 and F2 at three-loop order. Solid, curly
and wavy lines represent quarks, gluons and photons, respectively. In our calculation we
only consider contributions with at least one closed massless quark loop.

4 Three-loop form factor

In the following we concentrate on the contributions to F1 and F2 which contain at least
one closed massless quark loop. Altogether there are 42 such vertex diagrams, 41 of them
contain exactly one closed massless fermion loop and there is one diagram with two such
closed loops. Sample Feynman diagrams contribution at three-loop order to the photon
quark vertex are shown in Fig. 4.

Note that some of the contributing planar diagrams are already present in the large-Nc

limit [2] (see, e.g., Fig. 4(a)). However, other planar diagrams do not contribute to the
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Tree Feynman diagrams for e+e− → µ+µ−

Feynman diagrams at tree-level
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One-loop Feynman diagrams for e+e− → µ+µ− (1)

Feynman diagrams at one-loop level
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One-loop Feynman diagrams for e+e− → µ+µ− (2)

Feynman diagrams at one-loop level (cont.)
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Complexities and Calculation methods

Complexities

::::::::::
MUCH MORE

:::::::
one-loop

:::::::
Feynman

:::::::
diagrams

:::
due

::
to

::::
more

::::::
external

::::
legs.

For gg → ggggg process in pure Yang-Mills theory, there are 2 485 (∼ 103) tree Feynman
diagrams, and 227 585 (∼ 105) one-loop Feynman diagrams.

::::::
EXTRA

::::::::
complexity

:::
due

::
to

::::
finite

:::::::::
temperature

:::
and

::::
finite

::::::
density.

Feynman diagrams calculation in relativistic QFTs at finite temperature and finite density.
(“k
G¹”)

Conventional method:
To calculate ONE by ONE (Kå�f)

�pÏ	��a few

��¦	b�time-consuming

�(Ï	î�error-prone

��,	9�disposable

Efficient method:
To calculate ONCE for ALL (;Wp7)

�pÏ	��a great many

��¦	ë�time-saving

�(Ï	}�correctness-guaranteed

��,	��reusable
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Efficient methods

Efficient method at zero temperature and zero density

Based on the Lorentz symmetry (continuous spacetime symmetry)

L.M. Brown and R.P. Feynman,
Radiative Corrections to Compton
Scattering, Phys. Rev. 85, 231 (1952).

����������	
�����
�	�����������
������������������������ !"�#� "�$�#%�&'�
(
)*��+,�-��.,��#/��0�"��1�234 ������������������������ !"�#� "�$�#%�&5(
,�
*��67'7�8��,9(
��#/��0�"��1�234

:;:<=>:=:?�>@A;> BCD�EFGDH�IJKLD�KM�ICNOKPO�>QQQ�R�EFGDHIJKLDSFJT

CUUVOA==WWWSMFGDHVJKLDSFJT=VJKLDO=VCNOKPO=>QQQ=OXYYZJN= >=:
G. ‘t Hooft and M.J.G. Veltman, Scalar one-loop integrals,
Nucl. Phys. B 153, 365 (1979).

G. Passarino and M.J.G. Veltman, One-loop corrections for
e+e− annihilation into µ+µ− in the Weinberg model, Nucl.
Phys. B 160, 151 (1979).

Efficient method at finite temperature and finite density

?
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An observation from typical one-loop Feynman diagrams in QED (1)

k

l

kl + k

−iΣ(k)

µ ν

q

l

l + q

iΠµν(q)

l

p

l + p

l + p− q

p− q

−ieδΓµ(p, p− q)

µ

q
k

l

kl + k

−iΣ(k)

µ ν

q

l

l + q

iΠµν(q)

l

p

l + p

l + p− q

p− q

−ieδΓµ(p, p− q)

µ

q

−iΣ̃(k; 0,m) = − e
2 [

γ
α
(γρk

ρ
+ m)γα

]
×

∫
dDl

(2π)D
1

[l2 − 02] [(l + k)2 − m2]
:::::::::::::::::::::::

− e
2 [

γ
α
γργα

]
×

∫
dDl

(2π)D
lρ

[l2 − 02] [(l + k)2 − m2]
:::::::::::::::::::::::

,

iΠ̃
µν

(q;m;m) = − 4e
2
[
g
µν

m
2
]
×

∫
dDl

(2π)D
1

[l2 − m2] [(l + q)2 − m2]
::::::::::::::::::::::::

− 4e
2
[
g
µ
ρg

ν
σ − g

µν
gρσ + g

µ
σg

ν
ρ

]
q
σ ×

∫
dDl

(2π)D
lρ

[l2 − m2] [(l + q)2 − m2]
::::::::::::::::::::::::

− 4e
2
[
g
µ
ρg

ν
σ − g

µν
gρσ + g

µ
σg

ν
ρ

]
×

∫
dDl

(2π)D
lρlσ

[l2 − m2] [(l + q)2 − m2]
::::::::::::::::::::::::

,

Two-point one-loop Feynman diagram: two square brackets.
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An observation from typical one-loop Feynman diagrams in QED (2)

k

l

kl + k

−iΣ(k)

µ ν

q

l

l + q

iΠµν(q)

l

p

l + p

l + p− q

p− q

−ieδΓµ(p, p− q)

µ

q

−ieδΓ̃
µ
(p, p − q; 0;m;m) = − e

3 [
γ
α
(/p + m)γ

µ
(/p − /q + m)γα

]

×
∫

dDl

(2π)D
1

[l2 − 02] [(l + p)2 − m2] [(l + p − q)2 − m2]
::::::::::::::::::::::::::::::::::::

− e
3 [

γ
α
γργ

µ
(/p − /q + m)γα + γ

α
(/p + m)γ

µ
γργα

]

×
∫

dDl

(2π)D
lρ

[l2 − 02] [(l + p)2 − m2] [(l + p − q)2 − m2]
::::::::::::::::::::::::::::::::::::

− e
3 [

γ
α
γργ

µ
γσγα

]

×
∫

dDl

(2π)D
lρlσ

[l2 − 02] [(l + p)2 − m2] [(l + p − q)2 − m2]
::::::::::::::::::::::::::::::::::::

Three-point one-loop Feynman diagram: three square brackets.
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A further observation from typical two-point one-loop Feynman diagrams in
relativistic QFTs

Ã0(p;m1) =

∫
dDl

iπD/2

1[
(l + p)2 − m2

1

] ,

B̃0(p1;m1;m2) =

∫
dDl

iπD/2

1[
l2 − m2

1

] [
(l + p1)2 − m2

2

] ,

Ã ρ
(p;m1) =

∫
dDl

iπD/2

lρ[
(l + p)2 − m2

1

] ,

B̃{ρ,ρσ}
(p1;m1;m2) =

∫
dDl

iπD/2

{lρ, lρlσ}[
l2 − m2

1

] [
(l + p1)2 − m2

2

] .
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An even further observation from typical one-loop Feynman diagrams in
relativistic QFTs inlcuding gravitons

A further observation from typical two-point one-loop Feynman diagrams in
relativistic QFTs

��¼ �2�v2

2ð4�Þ2
; ��¼�13�2�v2

ð4�Þ2
 ; �v¼6�2�v2

ð4�Þ2
 : (35)

It is easy to find that the results for �� and �v obtained
from two-point and three-point functions of the Higgs field
[see Eqs. (34)] and that from two-point and four-point
functions [see Eq. (35)] contradict each other, which
indicates that the lowest order gravitational correction to
the renormalization of the Higgs sector in this model is
inconsistent.

If we reduce the complex scalar field � to a real scalar
field (namely, �� ¼ �), the Lagrangian has a Z2 symme-
try, � ! ��, then we arrive at a real scalar �4 theory
with spontaneously broken Z2 symmetry. There is no
Goldstone field after the spontaneous breaking of the dis-
crete Z2 symmetry. Therefore, compared with the case of
the �4 theory with spontaneously broken global U(1)
symmetry, all of the Feynman diagrams with Goldstone
field � in the pure real scalar correction part should be
removed here. It is easy to check that the renormalization
of the Higgs field � self-correction is also consistent, and
the result reads

�t ¼ 3�

2ð4�Þ2
 ; �� ¼ 0;

�� ¼ 9�

2ð4�Þ2
 ; �v ¼ � 3�

2ð4�Þ2
 :
(36)

For gravitational correction to �4 theory with sponta-
neously broken Z2 symmetry, the interactions between
Higgs field � and graviton h��, hence the related

Feynman diagrams, and the high derivative counterterms,
do not change compared with the case of �4 theory with
spontaneously broken U(1) symmetry. On the other hand,
as pointed out in Sec. III, the Goldstone field does not
contribute to the gravitational correction to the Higgs
sector in the case of �4 theory with spontaneously broken
U(1) symmetry. Therefore even though the Goldstone field
is absent in the case of �4 theory with spontaneously
broken Z2 symmetry, there is no difference between these

two cases for Oð�2Þ gravitational correction to the Higgs
sector. The contradiction of the gravitational correction to
Higgs field still holds.

IV. COMPARISON AND DISCUSSION

In order to reveal the reason of the inconsistence of the
gravitational correction to the Higgs sector, we make some
comparison with SQED with spontaneously broken local
U(1) symmetry. The Lagrangian takes the form

L SQED ¼ Tð�; A�Þ � Vð�Þ; (37)

where the potential Vð�Þ is given by Eq. (14), and the
kinetic term takes the form

Tð�; A�Þ ¼ ðD��Þ�ðD��Þ � 1
4F��F

��; (38)

withD� ¼ @� þ ieA�. This Lagrangian is invariant under

the following local U(1) gauge transformation

�ðxÞ ! �0ðxÞ ¼ expði
ðxÞÞ�ðxÞ;

A�ðxÞ ! A0
�ðxÞ ¼ A�ðxÞ � 1

e
@�
ðxÞ:

(39)

The renormalizability of this model had been studied
in Ref. [35]. Using Eqs. (17)–(20), and setting �t ¼ 0 in
Eq. (20), one arrives at

Tð�; A�Þ ¼ 1
2ð@��Þ2 þ 1

2ð@��Þ2 þ e2v�A�A
�

þ 1
2e

2�2A�A
� þ 1

2e
2�2A�A

� � e�A�@��

þ e�A�@��� 1
4F

��F�� þ 1
2e

2v2A�A
�

þ evA�@��: (40)

In this case, the covariant derivative in the kinetic term
ðD��Þ�ðD��Þ consists of the gauge field A� since the

complex scalar field� carries charge. This directly leads to
the appearance of the mixing between A� and � [see the

last term in Eq. (40)] after the spontaneous breaking of
local U(1) symmetry, which is proved to play a crucial role
in the renormalization in this model. Because of such
mixing term, the gauge field will be massive after eating
the Goldstone boson and the mass of the gauge field, which
is related to the VEV, is just the reflection of the informa-
tion from the spontaneous breaking of local U(1) symme-
try. The reason that the massive gauge field can give a
consistent correction to the Higgs field � is that it contains
not only the original massless gauge field but also the

(a) (b)

FIG. 10. Oð�2Þ corrections to the three-point functions of �.
(a) and (b) are both of weight 1 and permutation 3, which leads
to a factor 3.

FIG. 9. Oð�2Þ correction to the two-point function. The dia-
gram is of weight 1 but no permutation, which leads to a factor
of 1.

(a) (b) (c)

FIG. 11. Oð�2Þ corrections to the four-point functions of �.
(a)–(c) are of permutations 3, 4, and 6, and all of weight 1, which
leads to factors of 3, 4, and 6, respectively.
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Feynman diagrams, and the high derivative counterterms,
do not change compared with the case of �4 theory with
spontaneously broken U(1) symmetry. On the other hand,
as pointed out in Sec. III, the Goldstone field does not
contribute to the gravitational correction to the Higgs
sector in the case of �4 theory with spontaneously broken
U(1) symmetry. Therefore even though the Goldstone field
is absent in the case of �4 theory with spontaneously
broken Z2 symmetry, there is no difference between these

two cases for Oð�2Þ gravitational correction to the Higgs
sector. The contradiction of the gravitational correction to
Higgs field still holds.

IV. COMPARISON AND DISCUSSION

In order to reveal the reason of the inconsistence of the
gravitational correction to the Higgs sector, we make some
comparison with SQED with spontaneously broken local
U(1) symmetry. The Lagrangian takes the form

L SQED ¼ Tð�; A�Þ � Vð�Þ; (37)

where the potential Vð�Þ is given by Eq. (14), and the
kinetic term takes the form

Tð�; A�Þ ¼ ðD��Þ�ðD��Þ � 1
4F��F

��; (38)

withD� ¼ @� þ ieA�. This Lagrangian is invariant under

the following local U(1) gauge transformation

�ðxÞ ! �0ðxÞ ¼ expði
ðxÞÞ�ðxÞ;

A�ðxÞ ! A0
�ðxÞ ¼ A�ðxÞ � 1

e
@�
ðxÞ:

(39)

The renormalizability of this model had been studied
in Ref. [35]. Using Eqs. (17)–(20), and setting �t ¼ 0 in
Eq. (20), one arrives at

Tð�; A�Þ ¼ 1
2ð@��Þ2 þ 1

2ð@��Þ2 þ e2v�A�A
�

þ 1
2e

2�2A�A
� þ 1

2e
2�2A�A

� � e�A�@��

þ e�A�@��� 1
4F

��F�� þ 1
2e

2v2A�A
�

þ evA�@��: (40)

In this case, the covariant derivative in the kinetic term
ðD��Þ�ðD��Þ consists of the gauge field A� since the

complex scalar field� carries charge. This directly leads to
the appearance of the mixing between A� and � [see the

last term in Eq. (40)] after the spontaneous breaking of
local U(1) symmetry, which is proved to play a crucial role
in the renormalization in this model. Because of such
mixing term, the gauge field will be massive after eating
the Goldstone boson and the mass of the gauge field, which
is related to the VEV, is just the reflection of the informa-
tion from the spontaneous breaking of local U(1) symme-
try. The reason that the massive gauge field can give a
consistent correction to the Higgs field � is that it contains
not only the original massless gauge field but also the

(a) (b)

FIG. 10. Oð�2Þ corrections to the three-point functions of �.
(a) and (b) are both of weight 1 and permutation 3, which leads
to a factor 3.

FIG. 9. Oð�2Þ correction to the two-point function. The dia-
gram is of weight 1 but no permutation, which leads to a factor
of 1.

(a) (b) (c)

FIG. 11. Oð�2Þ corrections to the four-point functions of �.
(a)–(c) are of permutations 3, 4, and 6, and all of weight 1, which
leads to factors of 3, 4, and 6, respectively.

HAO-RAN CHANG, WEN-TAO HOU, AND YI SUN PHYSICAL REVIEW D 85, 124025 (2012)
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Ã0(p;m1) =

∫
dDl

iπD/2

1[
(l + p)2 − m2

1

] ,

B̃0(p1;m1;m2) =

∫
dDl

iπD/2

1[
l2 − m2

1

] [
(l + p1)2 − m2

2

] ,

Ã ρ
(p;m1) =

∫
dDl

iπD/2

lρ[
(l + p)2 − m2

1

] ,

B̃{ρ,ρσ}
(p1;m1;m2) =

∫
dDl

iπD/2

{lρ, lρlσ}[
l2 − m2

1

] [
(l + p1)2 − m2

2

] .
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Generic one-loop Feynman integrals at zero temperature and zero density
{

− iΣ̃, iΠ̃
µν

,−ieδΓ̃
µ
, · · ·

}

∼
{
Ã0, B̃0, C̃0, · · · , Ã ρ

, B̃ρ
, B̃ρσ

, C̃ρ
, C̃ρσ

, C̃ρστ
, · · ·

}
,

where the one-loop scalar Feynman integrals (OLSFIs) at zero temperature
and zero density

Ã0(p;m1) =

∫
dDl

iπD/2

1[
(l + p)2 − m2

1

] ,

B̃0(p1;m1;m2) =

∫
dDl

iπD/2

1[
l2 − m2

1

] [
(l + p1)2 − m2

2

] ,

C̃0(p1, p2;m1;m2;m3) =

∫
dDl

iπD/2

1[
l2 − m2

1

] [
(l + p1)2 − m2

2

] [
(l + p1 + p2)2 − m2

3

] ,

are Lorentz invariant, and the one-loop tensor Feynman integrals (OLTFIs) at zero temperature and zero density

Ã ρ
(p;m1) =

∫
dDl

iπD/2

lρ[
(l + p)2 − m2

1

] ,

B̃{ρ,ρσ}
(p1;m1;m2) =

∫
dDl

iπD/2

{lρ, lρlσ}[
l2 − m2

1

] [
(l + p1)2 − m2

2

] ,

C̃{ρ,ρσ,ρστ}
(p1, p2;m1;m2;m3) =

∫
dDl

iπD/2

{lρ, lρlσ, lρlσlτ}[
l2 − m2

1

] [
(l + p1)2 − m2

2

] [
(l + p1 + p2)2 − m2

3

] .

are Lorentz covariant and symmetric for ranks r ≥ 2.
::::::::::::::::::::::::::::::::::
After integrating over internal momentum l, the tensor

:::::::::::::::::::::::::::::::::::::::::
indices must be inherited by external momenta and metric tensor.
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Passarino-Veltman reduction in a nutshell (1)

Step-1: Reduce OLTFIs to master integrals at zero temperature and zero density

Based on the Lorentz covariance (continuous spacetime symmetry), the Lorentz-covariant OLTFIs
{

Ã ρ
, B̃ρ

, B̃ρσ
, C̃ρ

, C̃ρσ
, C̃ρστ

, · · ·
}

∼
{
p
ρ
, p

ρ
1 , p

ρ
2 , · · · , g

ρσ
, p

ρ
1p

σ
1 , (p

ρ
1p

σ
2 + p

ρ
2p

σ
1 ), p

ρ
2p

σ
2 , · · · ,

(
p
ρ
1g

στ
+ p

σ
1 g

τρ
+ p

τ
1g

ρσ)
,
(
p
ρ
2g

στ
+ p

σ
2 g

τρ
+ p

τ
2g

ρσ)
,

p
ρ
1p

σ
1 p

τ
1 ,

(
p
ρ
1p

σ
1 p

τ
2 + p

σ
1 p

τ
1p

ρ
2 + p

τ
1p

ρ
1p

σ
2

)
,
(
p
ρ
1p

σ
2 p

τ
2 + p

σ
1 p

τ
2p

ρ
2 + p

τ
1p

ρ
2p

σ
2

)
, p

ρ
2p

σ
2 p

τ
2 , · · ·

}

×
{
Ã1, B̃1, C̃1, C̃2, · · · , B̃00, B̃11, C̃00, C̃11, C̃12, C̃22, · · · , C̃001, C̃002, C̃111, C̃112, C̃122, C̃222, · · ·

}
.

Lorentz-invariant form factors can be expressed as a linear combination of master integrals
{
Ã1, B̃1, C̃1, C̃2, · · · , B̃00, B̃11, C̃00, C̃11, C̃12, C̃22, · · · , C̃001, C̃002, C̃111, C̃112, · · ·

}
∼

{
Ã0, B̃0, C̃0, · · ·

}
.

Step-2: Calculate master integrals at zero temperature and zero density

The master integrals Ã0, B̃0, C̃0, · · · are nothing but the Lorentz-invariant OLSFIs and had been analytically
calculated, say, in “

:
G.
::
‘t
::::
Hooft

:::
and

::::
M.J.G.

::::::
Veltman,

:::::
Scalar

:::::
one-loop

::::::
integrals,

::::
Nucl.

::::
Phys.

::
B
:::
153,

:::
365

::::
(1979)”.

As a consequence, the one-loop Feynman diagrams in relativistic QFTs at zero temperature and zero density
{

− iΣ̃, iΠ̃
µν

,−ieδΓ̃
µ
, · · ·

}
∼

{
Ã0, B̃0, C̃0, · · · , Ã ρ

, B̃ρ
, B̃ρσ

, C̃ρ
, C̃ρσ

, C̃ρστ
, · · ·

}

∼
{
Ã0, B̃0, C̃0, · · ·

}
.
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Passarino-Veltman reduction in a nutshell (2)

ö)¦:º� “;Wp7”
单圈主积分的解析计算

理论
方法
层面

软件
开发
层面

粒
子
物
理
领
域
单
圈
费
曼
图
的
高
效
计
算

单圈费曼积分的高效计算方法

基于高效计算方法开发软件包

进行单圈费曼图的计算机自动代数运算

单圈费曼图的高效计算

单圈费曼积分

Passarino-Veltman

Reduction
单圈张量积分 单圈标量积分

单圈费曼图

A brief summary of PVR

RQFTs At zero temperature and zero density At finite temperature and finite density

EMs PVR ?

LS with ?

OLSFIs LI: Ã0, B̃0, C̃0, · · · ?

OLTFIs LC: Ãρ, B̃ρ, B̃ρσ, C̃ρ, C̃ρσ, C̃ρστ , · · · ?

TSs LC ?

MIs LI: Ã0, B̃0, C̃0, · · · ?

Relativistic QFTs (RQFTs), Efficient Methods (EMs), Lorentz symmetry (LS),
One-loop scalar Feynman integrals (OLSFIs), One-loop tensor Feynman integrals (OLTFIs),
Lorentz-invariant (LI), Lorentz-covariant (LC), Tensor structures (TSs), Master integrals (MIs).
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Outline

1 Introduction and Motivation

2 From Passarino-Veltman reduction to Generalized Passarino-Veltman reduction
Passarino-Veltman reduction (PVR)
Gereralized Passarino-Veltman reduction (GPVR)
Two demonstration applications of GPVR

3 Summary and Outlook
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Generic OLSFIs at finite temperature and finite density

{
− iΣ, iΠ

µν
,−ieδΓ

µ
, · · ·

}

∼
{
A0,B0, C0, · · · ,A ρ

,Bρ
,Bρσ

,Cρ
,Cρσ

,Cρστ
, · · ·

}
.

Generic OLSFIs in relativistic QFTs at finite temperature and finite density m1, µ1

m2, µ2

p1

p2

l + p1 + p2

−(p1 + p2 + · · ·)

l + p1

l

m3, µ3

A0(p;m1, µ1; β)

=

∫
dDl

iπD/2

1

(l0 + p0 + µ1)2 −
[
(l + p)2 + m2

1

] ,

B0(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

1{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} ,

C0(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

=

∫
dDl

iπD/2

1{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

× 1{
(l0 + p0

1 + p0
2 + µ3)2 −

[
(l + p1 + p2)

2 + m2
3

]} ,

· · · · · ·
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Generic OLTFIs at finite temperature and finite density

Generic OLTFIs in relativistic QFTs at finite temperature and finite density

A ρ
(p;m1, µ1; β)

=

∫
dDl

iπD/2

lρ

(l0 + p0 + µ1)2 −
[
(l + p)2 + m2

1

] ,

B{ρ,ρσ}
(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

{lρ, lρlσ}{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} ,

C{ρ,ρσ,ρστ}
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

=

∫
dDl

iπD/2

{lρ, lρlσ, lρlσlτ}{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

× 1{
(l0 + p0

1 + p0
2 + µ3)2 −

[
(l + p1 + p2)

2 + m2
3

]} ,

· · · · · ·

Finite densities µa are introduced via i∂0 → i∂0 + µa.

Finite temperature T is introduced via l0 → iωn =





i
(2n+1)π

β , fermion,

i 2nπ
β , boson,

with β = 1/(kBT ).
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Challenges and Countermeasures

In relativistic QFTs at finite temperature and finite density,

No Lorentz invariance due to a rest reference frame of the many-body system in which the temperature
and density are measured.

The continuous spacetime symmetry is spatial SO(3) symmetry rather than spacetime SO(1, 3) symmetry.

In line with the habits of high-energy theorists, we prefer to work with Lorentz-covariant tensors.

The Lorentz-covariant tensors are
:::::::
incomplete to expand the one-loop tensor Feynman integrals.

Introduce a constant vector uρ = (1, 0, 0, 0) in momentum space, whose spatial momentum is zero, to
denote the rest reference frame.

Construct a complete set of (symmetric) tensor structures by combining Lorentz-covariant tensors with
this constant vector.

Hao-Ran Chang, Phys. Rev. D 110, 016022 (2024)

72 Quantum electrodynamics

kμ be the four-momentum of the photon. Current conservation requires
that Πμν be transverse,

kμΠμν = 0 (5.43)

and gauge invariance requires that

kμkνDμν = ρ (5.44)

in a covariant gauge specified by ρ. Both these constraints hold at T >
0, μ �= 0, as well as in the vacuum. The interested reader is referred to
Fradkin [1] for a proof of (5.43). The proof of (5.44) will now be outlined.

Consider making the gauge transformation Aμ → Aμ − ∂μα, ψ → eieαψ
in the partition function as expressed in (5.37). All terms are manifestly
independent of α apart from the gauge-fixing term, which becomes

− 1

2ρ
(∂μAμ − f)2

where

f = ∂2α

By construction, the partition function is gauge invariant. Therefore, if
we functionally differentiate lnZ with respect to f any number of times,
we must get zero. In particular,

δ lnZ

δf(x, τ)
=

〈∂μAμ(x, τ)〉
ρ

− f(x, τ)

ρ
= 0

δ2 lnZ

δf(x, τ)δf(x′, τ ′)
=

〈∂μAμ(x, τ)∂νAν(x
′, τ ′)〉

ρ2
− 〈∂μAμ(x, τ)〉f(x′, τ ′)

ρ2

(5.45)

− δ(τ − τ ′)δ(x − x′)
ρ

= 0

Evaluating (5.45) at f = 0 and taking the Fourier transform, we obtain
(5.44). A constraint on the thermal average of a product of N vector
potentials is likewise obtained by differentiating N times lnZ with respect
to f , and then setting f = 0.

The propagator, its inverse, and the self-energy, are all symmetric
second-rank tensors. Assuming rotational invariance (which would not
be correct for a solid) the most general tensor of this type is a linear
combination of gμν , kμkν , uμuν , and kμuν + kνuμ. Here uμ = (1, 0, 0, 0)
specifies the rest frame of the many-body system. Taking into account

5.4 Photon self-energy 73

(5.41) to (5.44) we obtain the general forms

Πμν = GPμν
T + FPμν

L

Dμν =
1

G− k2
Pμν

T +
1

F − k2
Pμν

L +
ρ

k2

kμkν

k2
(5.46)

(D−1)μν = (G− k2)Pμν
T + (F − k2)Pμν

L +
kμkν

ρ

The quantities F and G are scalar functions of k0 and |k|. The two pro-
jection operators are four-dimensionally transverse, but one is also three-
dimensionally transverse (PT) while the other is three-dimensionally lon-
gitudinal (PL):

P 00
T = P 0i

T = P i0
T = 0

P ij
T = δij − kikj/k2 (5.47)

Pμν
L = kμkν/k2 − gμν − Pμν

T

These have the properties

Pμσ
L PLσν = −Pμ

Lν

Pμσ
T PTσν = −Pμ

Tν

kμP
μν
T = kμP

μν
L = 0 (5.48)

Pμσ
L PTσν = 0

Pμ
Lμ = −1

Pμ
Tμ = −2

In the vacuum there is no preferred rest frame, so the vector uμ cannot
play any role (it is not defined). Also, in the vacuum Πμν must be propor-
tional to gμν − kμkν/k2; hence F = G. Furthermore, G can only depend
on k2. At finite temperature and density, however, F and G can depend
on k0 = u · k and |k| =

√
(u · k)2 − k2 separately, owing to the lack of

Lorentz invariance.
Let us evaluate the photon self-energy at the one-loop level. From

(5.40),

Πμν = e2T
∑

l

∫
d3p

(2π)3
Tr

(
γν

1

�p−m
γμ

1

�p+ �k −m

)
(5.49)

Here p0 = (2l + 1)πT i + μ and k0 = 2nπTi. We can always write Πμν =
Πμν

vac + Πμν
mat, where

Πμν
vac = lim

T→0
μ→0

Πμν (5.50)
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Step-1 in the GPVR (1)

To reduce tensor integrals to master integrals at zero temperature and finite density:

A ρ
(p;m1, µ1; β) = p

ρA1

+ u
ρA2,

Bρ
(p1;m1, µ1;m2, µ2; β) = p

ρ
1B1

+ u
ρB2,

Bρσ
(p1;m1, µ1;m2, µ2; β) = g

ρσB00 + p
ρ
1p

σ
1B11

+
(
p
ρ
1u

σ
+ p

σ
1u

ρ)B12 + u
ρ
u
σB22,

Cρ
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β) = p

ρ
1C1 + p

ρ
2C2

+ u
ρC3,

Cρσ
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β) = g

ρσC00 + p
ρ
1p

σ
1 C11 +

(
p
ρ
1p

σ
2 + p

σ
1 p

ρ
2

)
C12 + p

ρ
2p

σ
2 C22

+
(
p
ρ
1u

σ
+ p

σ
1u

ρ) C13 +
(
p
ρ
2u

σ
+ p

σ
2u

ρ) C23 + u
ρ
u
σC33,

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD
April 26, 2025 ,�AJhý-Øý8i�'�

22 / 42



Step-1 in the GPVR (2)

Cρστ
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

=
(
p
ρ
1g

στ
+ p

σ
1 g

τρ
+ p

τ
1g

ρσ) C001

+
(
p
ρ
2g

στ
+ p

σ
2 g

τρ
+ p

τ
2g

ρσ) C002

+ p
ρ
1p

σ
1 p

τ
1C111 +

(
p
ρ
1p

σ
1 p

τ
2 + p

σ
1 p

τ
1p

ρ
2 + p

τ
1p

ρ
1p

σ
2

)
C112

+
(
p
ρ
1p

σ
2 p

τ
2 + p

σ
1 p

τ
2p

ρ
2 + p

τ
1p

ρ
2p

σ
2

)
C122 + p

ρ
2p

σ
2 p

τ
2C222

+
(
u
ρ
g
στ

+ u
σ
g
τρ

+ u
τ
g
ρσ) C003

+
(
p
ρ
1p

σ
1u

τ
+ p

σ
1 p

τ
1u

ρ
+ p

τ
1p

ρ
1u

σ) C113

+
(
p
ρ
2p

σ
2u

τ
+ p

σ
2 p

τ
2u

ρ
+ p

τ
2p

ρ
2u

σ) C223

+
[
p
ρ
1

(
p
σ
2u

τ
+ p

τ
2u

σ)
+ p

ρ
2

(
p
σ
1u

τ
+ p

τ
1u

σ)
+ u

ρ (
p
σ
1 p

τ
2 + p

τ
1p

σ
2

)]
C123

+
(
p
ρ
1u

σ
u
τ
+ p

σ
1u

τ
u
ρ
+ p

τ
1u

ρ
u
σ) C133

+
(
p
ρ
2u

σ
u
τ
+ p

σ
2u

ρ
u
τ
+ p

τ
2u

ρ
u
σ) C233

+ u
ρ
u
σ
u
τC333,

· · · · · ·
The form factors can be expressed as a linear combination of master integrals as

{
A1,B1, C1, C2, · · · ,B00,B11, C00, C11, C12, C22, · · · , C001, C002, C111, C112, C122, C222, · · · ,

A2,B2, C3,B12,B22, C13, C23, C33, C003, C113, C223, C123, C133, C233, C333, · · ·
}

∼
{
A0,B0, C0, · · · ,B0

,B00
,C 0

,C 00
,C 000

, · · ·
}
.
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Step-2 in the GPVR (1)

To calculate master integrals
::
at

:::
finite

::::::::
temperature

:::
and

::::
finite

:::::
density:

A0(p;m1, µ1; β) =

∫
dDl

iπD/2

1

(l0 + p0 + µ1)2 −
[
(l + p)2 + m2

1

] ,

B0(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

1{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} ,

C0(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

=

∫
dDl

iπD/2

1{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

× 1{
(l0 + p0

1 + p0
2 + µ3)2 −

[
(l + p1 + p2)

2 + m2
3

]} ,

B{0,00}
(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

{l0, l0l0}{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} ,

C{0,00,000}
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

=

∫
dDl

iπD/2

{l0, l0l0, l0l0l0}{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

× 1{
(l0 + p0

1 + p0
2 + µ3)2 −

[
(l + p1 + p2)

2 + m2
3

]} .
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Step-2 in the GPVR (2)

To calculate these master integrals, one can work in the imaginary time formalism, where

l
0 → iωn =





i
(2n+1)π

β , fermion,

i 2nπ
β , boson,

∫ +∞

−∞

dl0

2π
f(l

0
) → 1

β

∑

iωn

f(iωn),

for n = 0,±1,±, 2, · · · ,±∞ and β = 1/(kBT ).

In relativistic QFTs at finite temperature and finite density,

Calculation of scalar master integrals

P. Rehberg and S.P. Klevansky, and J. Hüfner, Phys. Rev. C 53, 410 (1996),
Hadronization in the SU(3) Nambu-Jona-Lasinio model. A0, B0, and C0

P. Rehberg and S.P. Klevansky, Annals of Phys, 252, 422 (1996),
One Loop Integrals at Finite Temperature and Density. A0, B0, and C0

A.S. Khvorostukhin, Acta Physica Polonica B, 52, 1303 (2021), arXiv:2011.14596,
Calculation of the one loop box integral at Finite Temperature and Density. D0

for fermionic internal lines.

Calculation of tensor master integrals

Tensor master integrals (B0,B00,C 0,C 00,C 000, · · · ) have not yet been analytically calculated

for fermionic and bosonic internal lines.
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Take-home message of GPVR (1)

In relativistic QFTs at finite temperature and finite density, the one-loop Feynman diagrams

{
− iΣ, iΠ

µν
,−ieδΓ

µ
, · · ·

}
∼

{
A0,B0, C0, · · · ,A ρ

,Bρ
,Bρσ

,Cρ
,Cρσ

,Cρστ
, · · ·

}
.

Based on the residual symmetry [ SO(3) ], the non-Lorentz-covariant OLTFIs
{

A ρ
,Bρ

,Bρσ
,Cρ

,Cρσ
,Cρστ

, · · ·
}

∼
{
p
ρ
, p

ρ
1 , p

ρ
2 , · · · , g

ρσ
, p

ρ
1p

σ
1 , (p

ρ
1p

σ
2 + p

ρ
2p

σ
1 ), p

ρ
2p

σ
2 , · · · ,

(
p
ρ
1g

στ
+ p

σ
1 g

τρ
+ p

τ
1g

ρσ)
,
(
p
ρ
2g

στ
+ p

σ
2 g

τρ
+ p

τ
2g

ρσ)
,

p
ρ
1p

σ
1 p

τ
1 ,

(
p
ρ
1p

σ
1 p

τ
2 + p

σ
1 p

τ
1p

ρ
2 + p

τ
1p

ρ
1p

σ
2

)
,
(
p
ρ
1p

σ
2 p

τ
2 + p

σ
1 p

τ
2p

ρ
2 + p

τ
1p

ρ
2p

σ
2

)
, p

ρ
2p

σ
2 p

τ
2 , · · · ,

u
ρ
,
(
p
ρ
1u

σ
+ p

σ
1u

ρ)
,
(
p
ρ
2u

σ
+ p

σ
2u

ρ)
, · · · , uρ

u
σ
, · · · ,

(
u
ρ
g
στ

+ u
σ
g
τρ

+ u
τ
g
ρσ)

,
(
p
ρ
1p

σ
1u

τ
+ p

σ
1 p

τ
1u

ρ
+ p

τ
1p

ρ
1u

σ)
,
(
p
ρ
2p

σ
2u

τ
+ p

σ
2 p

τ
2u

ρ
+ p

τ
2p

ρ
2u

σ)
,

(
p
ρ
1u

σ
u
τ
+ p

σ
1u

τ
u
ρ
+ p

τ
1u

ρ
u
σ) [

p
ρ
1

(
p
σ
2u

τ
+ p

τ
2u

σ)
+ p

ρ
2

(
p
σ
1u

τ
+ p

τ
1u

σ)
+ u

ρ (
p
σ
1 p

τ
2 + p

τ
1p

σ
2

)]
,

(
p
ρ
1u

σ
u
τ
+ p

σ
1u

τ
u
ρ
+ p

τ
1u

ρ
u
σ)

,
(
p
ρ
2u

σ
u
τ
+ p

σ
2u

ρ
u
τ
+ p

τ
2u

ρ
u
σ)

, u
ρ
u
σ
u
τ
, · · ·

}

×
{
A1,B1, C1, C2, · · · ,B00,B11, C00, C11, C12, C22, · · · , C001, C002, C111, C112, C122, C222, · · · ,

A2,B2, C3,B12,B22, C13, C23, C33, C003, C113, C223, C123, C133, C233, C333, · · ·
}
.

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD
April 26, 2025 ,�AJhý-Øý8i�'�

26 / 42



Take-home message of GPVR (2)

The form factors are non-Lorentz-invariant, and can be expressed as a linear combination of OLSFIs and
one-loop purely-temporal tensor Feynman integrals as

{
A1,B1, C1, C2, · · · ,B00,B11, C00, C11, C12, C22, · · · , C001, C002, C111, C112, C122, C222, · · · ,

A2,B2, C3,B12,B22, C13, C23, C33, C003, C113, C223, C123, C133, C233, C333, · · ·
}

∼
{
A0,B0, C0, · · · ,B0

,B00
,C 0

,C 00
,C 000

, · · ·
}
.

As a consequence, the one-loop Feynman diagrams
{

− iΣ, iΠ
µν

,−ieδΓ
µ
, · · ·

}
∼

{
A0,B0, C0, · · · ,A ρ

,Bρ
,Bρσ

,Cρ
,Cρσ

,Cρστ
, · · ·

}

∼
{
A0,B0, C0, · · ·B0

,B00
,C 0

,C 00
,C 000

, · · ·
}
.

	P)¦:º�“;Wp7”

A brief comparison between PVR and GPVR

RQFTs At zero temperature and zero density At finite temperature and finite density

EMs PVR GPVR

LS with without

OLSFIs LI: Ã0, B̃0, C̃0, · · · Non-LI: A0,B0, C0, · · ·
OLTFIs LC: Ãρ, B̃ρ, B̃ρσ, C̃ρ, C̃ρσ, C̃ρστ , · · · Non-LC: Aρ, Bρ, Bρσ, Cρ, Cρσ, Cρστ , · · ·

TSs LC Non-LC (uρ) and LC

MIs LI: Ã0, B̃0, C̃0, · · · Non-LI: A0,B0, C0, · · · , B0, B00, C0, C00, C000, · · ·

Relativistic QFTs (RQFTs), Efficient Methods (EMs), Lorentz symmetry (LS),
One-loop scalar Feynman integrals (OLSFIs), One-loop tensor Feynman integrals (OLTFIs),
Lorentz-invariant (LI), Lorentz-covariant (LC), Tensor structures (TSs), Master integrals (MIs).
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Outline

1 Introduction and Motivation

2 From Passarino-Veltman reduction to Generalized Passarino-Veltman reduction
Passarino-Veltman reduction (PVR)
Gereralized Passarino-Veltman reduction (GPVR)
Two demonstration applications of GPVR

3 Summary and Outlook

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD
April 26, 2025 ,�AJhý-Øý8i�'�

28 / 42



The first demonstration application of GPVR

After decomposition and combination by hand, the one-loop pseudoscalar polarization function in the
Nambu-Jona-Lasinio model can be expressed as

− iΠ
PS
ff̄′ (k;mf , µf ;mf′ , µf′ ; β)

= −Nc

∫
d4l

(2π)4

tr
{
γ5 [lργρ + µfγ0 + mf ] γ

5
[
(lσ − kσ)γσ + µf′γ0 + mf′

]}
[
(l0 + µf )2 − l2 − m2

f

] [
(l0 + k0 + µf′ )2 − (l − k)2 − m2

f′
]

=
iNc

8π2

{
A0 (0;mf , µf ; β) + A0

(
0;mf′ , µf′ ; β

)

+
[ (

mf − mf′
)2 −

(
k
0
+ µf − µf′

)2
− k

2
]
B0

(
k;mf , µf ;mf′ , µf′ ; β

)}
. (1)

P. Rehberg and S.P. Klevansky, and J. Hüfner, Phys. Rev. C 53, 410 (1996),
P. Rehberg and S.P. Klevansky, Annals of Phys, 252, 422 (1996).

In the spirit of tensor reduction, the one-loop pseudoscalar polarization function can also be expressed as

− iΠ
PS
ff̄′ (k;mf , µf ;mf′ , µf′ ; β)

=
4iNc

(4π)2

{
gρσ

[
Bρσ (

k;mf , µf ;mf′ , µf′ ; β
)
− Bρ (

k;mf , µf ;mf′ , µf′
)
k
σ
]

+ gρ0Bρ (
k;mf , µf ;mf′ , µf′ ; β

) (
µf + µf′

)
− gρ0k

ρB0

(
k;mf , µf ;mf′ , µf′ ; β

)

+
(
µfµf′ − mfmf′

)
B0

(
k;mf , µf ;mf′ , µf′ ; β

)}
. (2)
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The second demonstration application of GPVR (1)

In terms of two one-loop tensor Feynman integrals Bρ(q;m,µ;m,µ; β) and Bρσ(q;m,µ;m,µ; β), and a
one-loop scalar Feynman integral B0(q;m,µ;m,µ; β), the one-loop vacuum polarization in the D-dimensional
QED can be recast as

iΠ
λτ

(q;m,µ;m,µ; β) = −e
2
∫

dDl

(2π)D

tr
{
γλ [lργρ + µγ0 + m] γτ [(lσ + qσ)γσ + µγ0 + m]

}

[(l0 + µ)2 − l2 − m2] [(l0 + q0 + µ)2 − (l + q)2 − m2]

=
−4ie2

(4π)D/2

{[
g
λ
ρg

τ
σ − g

λτ
gρσ + g

λ
σg

τ
ρ

][
Bρσ

(q;m,µ;m,µ; β) + Bρ
(q;m,µ;m,µ; β)q

σ
]

+ µ
[
g
λ
ρg

τ
0 − g

λτ
gρ0 + g

λ
0g

τ
ρ

][
2Bρ

(q;m,µ;m,µ; β) + q
ρB0(q;m,µ;m,µ; β)

]

+
[
2µ

2
g
λ
0g

τ
0 + (m

2 − µ
2
)g

λτ
]
B0(q;m,µ;m,µ; β)

}
.

The analytical result after utilizing GPVR automatically satisfies the Ward identity

qρΠ
ρσ

(q;m,µ;m,µ; β) = 0. (3)
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The second demonstration application of GPVR (2)

From explicit analytical expressions of Πρσ(q0, |q|, µ) at zero temperature and finite density in
Phys. Rev. B 97, 075202 (2018),

Π00(q0, |q|, µ):

Plasmon: Jianhui Zhou, Hao-Ran Chang, and Di Xiao, Phys. Rev. B 91, 035114 (2015).

Πij(q0, |q|, µ):

::::::
Diagonal

:::::::
elements: δijΠ

ij(q0, |q|, µ)
Plasmon and Optical conductivity: A. Thakur, K. Sadhukhan, and A. Agarwal, Phys. Rev. B
97, 035403 (2018).

Optical conductivity: Phillip E. C. Ashby and J. P. Carbotte, Phys. Rev. B 89, 245121
(2014).

::::::::
Asymmetric

::::
part

::
of

:::::::::
off-diagonal

::::::
elements: εijkΠ

ij(q0, |q|, µ)
Chiral magnetic conductivity: D.E. Kharzeev and H.J. Warringa, Phys. Rev. D 80, 034028

(2009).

Π0j(q0, |q|, µ) and Πj0(q0, |q|, µ):
S. Ghosh and C. Timm, Phys. Rev. B 99, 075104 (2019).

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD
April 26, 2025 ,�AJhý-Øý8i�'�

31 / 42



The second demonstration application of GPVR (3)

From explicit analytical expressions of Πρσ(q0, |q|, µ) at zero temperature and finite density in
Phys. Rev. B 97, 075202 (2018),

Πρσ(q0, |q|, µ) under the hard dense loop approximation (where q0, |q| ≪ µ) :

Dam Thanh Son (ZRq) and Naoki Yamamoto, Phys. Rev. D 87, 085016 (2013).

Chiral Plasma Instabilities:

Yukinao Akamatsu and Naoki Yamamoto, PRL 111, 052002 (2013).

Hao-Ran Chang (Sichuan Normal University) Reduction for OLFIs in the RQFTs at FT and FD
April 26, 2025 ,�AJhý-Øý8i�'�

32 / 42



Summary and Remark

The most significant in the reduction for one-loop tensor Feynman integrals is to construct a complete set
of tensor structures based on continuous spacetime symmetry.

In relativistic QFTs at zero temperature and zero density, the Lorentz symmetry is respected.
Consequently, the tensor structures are Lorentz covariant and the master integrals are Lorentz invariant.

In relativistic QFTs at finite temperature and finite density, the Lorentz symmetry is broken.
Consequently, the Lorentz-covariant tensor structures are

:::::::
incomplete and the master integrals are not

Lorentz-invariant any longer.

A complete set of (symmetric) tensor structures can be constructed by combining the constant vector
uρ = (1, 0, · · · , 0) with Lorentz-covariant tensors, where uρ in D-dimensional spacetime denotes the
rest reference frame due to finite temperature and finite density.

The reason for introducing this extra constant vector uρ = (1, 0, · · · , 0) to the Lorentz-covariant tensors
here is similar to that for imposing a gauge condition to the eletromagnetic field Aρ.

At finite temperature and finite density, the purely-temporal tensor master integrals
B0,B00,C 0,C 00,C 000, · · · must be introduced, and all the master integrals are non-Lorentz invariant.

GPVR goes back to PVR after artificially removing terms containing uρ and simultaneously setting
µa = 0 and T = 0. The constant vector uρ is not defined at zero temperature and zero density.
According to the third law of thermodynamics zero temperature is qualitatively different from finite
temperature.

Both GPVR and PVR are valid for tensor Feynman integrals in relativistic QFTs at finite temperature and
finite density when D ≥ (1 + 1).
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Outlook

Reduction up to
:::::
N-point one-loop tensor Feynman integrals.

Generalization to
:::::::
multi-loop tensor Feynman integrals

“Auxiliary mass flow method” (Yan-Qing Ma).

Generalization to
:::
more

::::::
efficient reduction than GPVR:

Incorporating Effects of finite temperature and finite density with
“Improved PV-reduction method with auxiliary vector” (Bo Feng).

Generalization to
:::
other

::::::::::::::
energy-momentum

:::::::
relations:

Pseudo-relativistic QFTs: E(p) = ±
√

p2v2a +∆2
a V.S. E(p) = ±

√
p2c2 +m2c4

Non-relativistic QFTs: E(p) = p2

2m
(V. Shtabovenko).

Generalization to
::::::::::
nonequilibrium

:::::::
processes.

Generalization to
:::::
AdS/dS

::::::::
spacetime (Bo Feng).

:::::::
Computer

::::::
program

:::::::
packages for automatic algebraic calculation.

Calculation of scalar master integrals for purely boson internal lines:

A(f/b)
0 , B(f/b)

0 , C(f/b)
0 , D(f/b)

0 , · · ·
Calculation of tensor master integrals for purely fermion/boson internal lines:

A 0
(f/b)

, B0;00
(f/b)

, C 0;00;000
(f/b)

, D0;00;000;0000
(f/b)

, · · ·
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Thanks for your attention !
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Contribution of finite temperature and finite density

5.4 Photon self-energy 73

(5.41) to (5.44) we obtain the general forms

Πμν = GPμν
T + FPμν

L

Dμν =
1

G− k2
Pμν

T +
1

F − k2
Pμν

L +
ρ

k2

kμkν

k2
(5.46)

(D−1)μν = (G− k2)Pμν
T + (F − k2)Pμν

L +
kμkν

ρ

The quantities F and G are scalar functions of k0 and |k|. The two pro-
jection operators are four-dimensionally transverse, but one is also three-
dimensionally transverse (PT) while the other is three-dimensionally lon-
gitudinal (PL):

P 00
T = P 0i

T = P i0
T = 0

P ij
T = δij − kikj/k2 (5.47)

Pμν
L = kμkν/k2 − gμν − Pμν

T

These have the properties

Pμσ
L PLσν = −Pμ

Lν

Pμσ
T PTσν = −Pμ

Tν

kμP
μν
T = kμP

μν
L = 0 (5.48)

Pμσ
L PTσν = 0

Pμ
Lμ = −1

Pμ
Tμ = −2

In the vacuum there is no preferred rest frame, so the vector uμ cannot
play any role (it is not defined). Also, in the vacuum Πμν must be propor-
tional to gμν − kμkν/k2; hence F = G. Furthermore, G can only depend
on k2. At finite temperature and density, however, F and G can depend
on k0 = u · k and |k| =

√
(u · k)2 − k2 separately, owing to the lack of

Lorentz invariance.
Let us evaluate the photon self-energy at the one-loop level. From

(5.40),

Πμν = e2T
∑

l

∫
d3p

(2π)3
Tr

(
γν

1

�p−m
γμ

1

�p+ �k −m

)
(5.49)

Here p0 = (2l + 1)πT i + μ and k0 = 2nπTi. We can always write Πμν =
Πμν

vac + Πμν
mat, where

Πμν
vac = lim

T→0
μ→0

Πμν (5.50)
74 Quantum electrodynamics

is the vacuum self-energy and Πμν
mat is the remainder due to the presence of

matter. The vacuum part is discussed in many textbooks on field theory,
such as Peskin and Schroeder [2]. The matter part is readily evaluated:

Π00
mat = − e2

π2
Re

∫ ∞

0

dp p2

Ep
NF(p)

[
1 +

4Epk
0 − 4E2

P − k2

4pω
ln

(
R+

R−

)]

(5.51)

Πμ
matμ = −2

e2

π2
Re

∫ ∞

0

dp p2

Ep
NF(p)

[
1 − 2m2 + k2

4pω
ln

(
R+

R−

)]

Here

ω = |k| k2 = k2
0 − ω2 Ep =

√
p2 + m2

NF(p) =
1

eβ(Ep−μ) + 1
+

1

eβ(Ep+μ) + 1

R± = k2 − 2k0Ep ± 2pω

Also, the reader should note that here we define the action of the operator
Re as follows: Ref(k0) = 1

2 [f(k0) + f(−k0)].
Various limits of (5.51) are of physical interest. They correspond to the

screening of electric and magnetic fields and plasma oscillations. These
topics are discussed in Chapter 6 in particular, in the context of linear
response theory.

5.5 Loop corrections to lnZ

5.5.1 Two loops

The lowest-order correction to lnZ due to interactions is the two-loop
diagram seen in (5.39). There are two methods of doing explicit calcula-
tions with such diagrams. In the traditional method the frequency sums
are performed directly. Another method uses analytic continuation and
contour integrals, as discussed in Chapter 3. Both methods must of course
give the same answer, but usually the contour integral method is much
easier.

From (5.39), we have in the Feynman gauge the exchange contribution

lnZex

βV
= −1

2
e2

∫
d3p

(2π)3
d3q

(2π)3
d3k

(2π)3
(2π)3δ(p − q − k)

× T 3
∑

np,nq,nk

βδnp,nq+nk

Tr[γμ(�p + m)γμ(�q + m)]

k2(p2 −m2)(q2 −m2)

(5.52)

Josehp I. KAPUSTA and Charles GALE, Finite-temperature field theory: Principles and Applications.
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Reducing form factors to master integrals at zero temperature and zero
density

After integration over l, Lorentz tensor index ρ of lρ must be inherited by a complete set of rank-one Lorentz
tensor. In the present case, the Lorentz tensor has no choice but to be pρ

1 . As a result,

∫
dDl

iπD/2

lρ[
l2 − m2

1

] [
(l + p1)2 − m2

2

] = B̃ρ
(p1;m1;m2) = p

ρ
1B̃1(p1;m1;m2). (4)

Contracting p1ρ with the left-handed side of B̃ρ(p1;m1;m2) gives rise to

p1ρB̃ρ
(p1;m1;m2) =

∫
dDl

iπD/2

p1 · l[
l2 − m2

1

] [
(l + p1)2 − m2

2

]

=

∫
dDl

iπD/2

1
2

{
[
(l + p1)

2 − m2
2

]
:::::::::::

−
[
l2 − m2

1

]
+

(
m2

2 − m2
1 − p2

1

)
}

[
l2 − m2

1

][
(l + p1)2 − m2

2

]
:::::::::::

=
Ã0(0;m1)

2
− Ã0(0;m2)

2
+

(
m2

2 − m2
1 − p2

1

)

2
B̃0(p1;m1;m2). (5)

Contracting p1ρ with the right-handed side of B̃ρ(p1;m1;m2) gives rise to

p1ρB̃ρ
(p1;m1;m2) = p1ρp

ρ
1B̃1(p1;m1;m2) = p

2
1B̃1(p1;m1;m2). (6)

From the above two equations, the form factor B̃1 can be expressed in terms of Ã0 and B̃0 as

B̃1(p1;m1;m2) =

[
Ã0(0;m1) − Ã0(0;m2)

2p2
1

+

(
m2

2 − m2
1 − p2

1

)

2p2
1

B̃0(p1;m1;m2)

]
∼ {Ã0, B̃0}. (7)
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Reducing form factors to master integrals at finite temperature and finite
density

After integration over l, Lorentz tensor index ρ of lρ must be inherited by a complete set of rank-one Lorentz
tensor. In the present case, the tensor structures have no choice but to be pρ

1 and uρ. As a result,

Bρ
(p1;m1, µ1;m2, µ2; β) = p

ρ
1B1(p1;m1, µ1;m2, µ2; β) + u

ρB2(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

lρ{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} . (8)

Contracting p1ρ and uρ with both sides of Bρ(p1;m1, µ1;m2, µ2; β) gives rise to



p1 · p1 p1 · u

u · p1 u · u







B1

B2


 =




p1ρBρ

uρBρ


 ≡




F1

F2


 , (9)

where

F1 ≡ p1ρBρ
=

A0(0;m1, µ1; β) − A0(0;m2, µ2; β)

2
− (µ2 − µ1)B

0
(p1;m1, µ1;m2, µ2; β)

+
m2

2 − (m2
1 − µ1

2) −
[
(µ2 + p0

1)
2 − p2

1

]

2
B0(p1;m1, µ1;m2, µ2; β),

F2 ≡ uρBρ
= B0

(p1;m1, µ1;m2, µ2; β). (10)

The form factors can be expressed as a combination of A0, B0, B0, namely,



B1

B2


 ∼

{
A0,B0,B

0
}
. (11)
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Comparison between zero and finite

At finite temperature and finite density,

Bρ
(p1;m1, µ1;m2, µ2; β) = p

ρ
1B1(p1;m1, µ1;m2, µ2; β) + u

ρB2(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

lρ{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]} .




p1 · p1 p1 · u

u · p1 u · u







B1

B2


 =




p1ρBρ

uρBρ


 ≡




F1

F2


 ,

where

F1 ≡ p1ρBρ
=

A0(0;m1, µ1; β) − A0(0;m2, µ2; β)

2
− (µ2 − µ1)B

0
(p1;m1, µ1;m2, µ2; β)

+
m2

2 − (m2
1 − µ1

2) −
[
(µ2 + p0

1)
2 − p2

1

]

2
B0(p1;m1, µ1;m2, µ2; β),

F2 ≡ uρBρ
= B0

(p1;m1, µ1;m2, µ2; β).

Directly setting µa = 0, β = ∞ and artificially removing terms containing uρ can give rise to the expression at
zero temperature and zero density,

B̃ρ
(p1;m1;m2) = p

ρ
1B̃1(p1;m1;m2) =

∫
dDl

iπD/2

lρ[
l2 − m2

1

] [
(l + p1)2 − m2

2

] ,

where

B̃1(p1;m1;m2) =
Ã0(0;m1) − Ã0(0;m2)

2p2
1

+
m2

2 − m2
1 − p2

1

2p2
1

B̃0(p1;m1;m2).
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Alternative GPVR (1)

In relativistic QFTs at finite temperature and finite density,

The continuous spacetime symmetry is spatial SO(D − 1) symmetry rather than spacetime SO(1, D − 1)
symmmtry.

Only the reduction for the spatial component(s) of one-loop tensor Feynman integrals are needed.

The Lorentz-covariant tensors are
:::::::::
over-complete to expand the one-loop tensor Feynman integrals.

A complete set of tensor structures can be constructed based on SO(D − 1) symmetry.

Treat the
::::
spatial

::::::::
components

::
in

::
the

:::::
FIRST

::::
GPVR just as the

::::::::::
temporal-spatial

::::::::
components

:
in
:::
the

:::
PVR.

Jianhui Zhou and Hao-Ran Chang, Phys. Rev. B 97, 075202 (2018)
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Alternative GPVR (2)

Based on the SO(D − 1) symmetry, a complete set of (symmetric) SO(D − 1)-covariant tensors are
constructed to expand the one-loop spatial tensor Feynman integrals.

A i
(p;m1, µ1; β)

=

∫
dDl

iπD/2

li

(l0 + p0 + µ1)2 −
[
(l + p)2 + m2

1

]

= −p
iA0(0;m1, µ1; β),

Bi
(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

li{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

= p
i
1B1(p1;m1, µ1;m2, µ2; β),

B0i
(p1;m1, µ1;m2, µ2; β) = Bi0

(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

l0li{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

= p
i
1B01(p1;m1, µ1;m2, µ2; β),

Bij
(p1;m1, µ1;m2, µ2; β)

=

∫
dDl

iπD/2

lilj{
(l0 + µ1)2 −

[
l2 + m2

1

]} {
(l0 + p0

1 + µ2)2 −
[
(l + p1)

2 + m2
2

]}

= −δ
ijB00(p1;m1, µ1;m2, µ2; β) + p

i
1p

j
1B11(p1;m1, µ1;m2, µ2; β),
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Alternative GPVR (3)

C i
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

C 0i
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β) = C i0

(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

C ij
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

C 00i
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β = C 0i0

(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

= C i00
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

C 0ij
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β) = C i0j

(p1, p2;m1, µ1;m2, µ2;m3, µ3; β)

= C ij0
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

C ijk
(p1, p2;m1, µ1;m2, µ2;m3, µ3; β),

· · · · · ·

Too many generic one-loop tensor Feynman integrals.

Not in line with the habits of high-energy theorists.
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