

在电子散射实验中研究丰中子氢同位素⁶H

Study of the neutron-rich hydrogen isotope ⁶H in an electron scattering

experiment at MAMI-A1

邵天浩

复旦大学

合作者:陈金辉, Josef Pochodzalla

Based on PhysRevLett.134.162501

- 核子能够离开中子滴线多远?
- 丰中子环境下的核子间相互作用?
- 四中子态 ⁴n, ²⁷O/²⁸O 等丰中子态在实验中被发现,如何理解它们的结构和其中的相互作用?

³ He z: 2 n: 1 Jπ 1/2+ T _{1/2} :stable	⁴ He z: 2 n: 2 Jπ 0+ T _{1/2} :stable	⁵ He z: 2 n: 3 Jπ: 3/2- T _{1/2} :0.648 meV decay n ?%	[°] He z: 2 n: 4 Jπ 0+ T _{1/2} :806.7 ms 1.5 decay β- 100%	⁷ He z: 2 n: 5 Jπ (3/2)- T _{1/2} :150 keV 20 decay n ?%	⁸ He z: 2 n: 6 Jπ 0+ T _{1/2} :119.1 ms 1.2 decay β- 100% β- n 16%
² H	³ H	⁴ H	⁵ H	еН	⁷ H
z:1n:1	z: 1 n: 2	z:1n:3	z:1n:4	z:1n:5	z:1n:6
Jπ: 1+	Jπ: 1/2+	Jπ: 2-	Jπ: (1/2+)	Jπ:?	Jπ: (1/2+)
T _{1/2} :stable	T _{1/2} :12.32 y 0.02 decay β- 100%	T _{1/2} : decay n 100%	T _{1/2} :5.3 meV 0.4 decay ec SF 100%	T _{1/2} :1.55 meV 0.44	T _{1/2} :0.09 meV +94-6

- 4H, 5H: 研究较多, 信号明显
- ⁶H, ⁷H: 研究较少, 信号模糊, 结果相互冲突
- ⁶H 和 ⁷H 有着已知最大的中子数和质子数之比,是研究丰中子条件下的核子之间相互作用的 理想平台。

Yu.B.Gurov et. al., JETP Letters, Vol.78, No.4, 2003, pp. 183-187

2025/4/25

上海 4月25日-28日

■ 对 ⁶H 的理论计算

E. Hiyama et. al., Physics Letters B 833 (2022) 137367

上海 4月25日-28日

实验原理

- 核反应: ⁷Li(e, e'pπ⁺)⁶H
- 测量散射电子、反应中产生的 质子和π⁺的动量。重建该反应 的丢失质量谱 (miss-mass spectrum)。
- 预期产生率:在目标区间内约
 每天1个事例。
- 预期信号解析度:约1.2
 MeV。

■ 美因茨大学核物理研究所

美因茨加速器(MAMI): 855 MeV电子束流

实验装置

- run_2023: 92.7% natural Lithium,
- run_2024: 99.99% enriched Lithium-7

数据分析

■ 选择位于三重符合区间的事例

随机背景=AB随机+AC随机+BC随机-2×完全随机 (根据选取区域的面积,缩放到三重符合区域)

■ 6H能量分布:丢失质量信号 – 3H+n+n+n阈值。支持6H基态能量较小。

2025/4/25

上海 4月25日-28日

- 首次在电子散射实验中观测到6H信号。
- 测量得到的⁶H基态能量和宽度远小于
 2022年最新的实验测量和理论计算结
 果,支持⁶H基态能量较小,其中可能存
 在比预期中更强的中子之间相互作用。
 期待更多的理论解释。
- 验证了电子散射产生丰中子核的可能性,可以推广到其它丰中子核实验。
 ⁶Li(e, e'pπ⁺)⁵H, ⁴He(e, e'pπ⁺)³n,
 ⁷Li(e, e'π⁺π⁺)⁷H, ⁴He(e, e'π⁺π⁺)⁴n

总结

- ■为了研究⁶H基态能量上存在的难题,我们首次在电子散射实验MAMI-A1上产 生了⁶H。
- ■测量得到的⁶H基态能量和宽度远小于最新的实验测量和理论计算结果,其中可能存在比预期中更强的中子之间相互作用。
- ■该电子散射实验方法有望推广到其它对丰中子核的研究中。

感谢合作组成员: Jinhui Chen, Josef Pochodzalla, Patrick Achenbach, Mirco Christmann, Michael O. Distler, Luca Doria, Anselm Esser, Julian Geratz, Christian Helmel, Matthias Hoek, Ryoko Kino, Pascal Klag, Yu-Gang Ma, David Markus, Harald Merkel, Miha Mihovilović, Ulrich Muller, Sho Nagao, Satoshi N. Nakamura, Kotaro Nishi, Fumiya Oura, Jonas Pätschke, Björn Sören Schlimme, Concettina Sfienti, Marcell Steinen, Michaela Thiel, Andrzej Wilczek, and Luca Wilhelm

Backups

MAMI-A1 setup

Choice of kinematics: 1. W ~ 1200 MeV for proton to produce Delta⁺(1232); 2. low momentum transfer to ⁶H;
 3. feasible with the setups of three spectrometers.

Optical properties of the A1 spectrometers

	units	Α	В	С	
Configuration	-	QSDD	D	QSDD	
dispersive plane -		point-ponit point-ponit		point-ponit	
non dispersive plane	-	parallel-ponit	point-ponit	parallel-ponit	
Maximum momentum	[MeV/c]	735	870	551	
Reference momentum	[MeV/c]	630	810	459	
Central Momentum	[MeV/c]	665	810	490	
Solid Angle	[msr]	28	5.6	28	
Scattering Angle	-	-	-	-	
minimum angle	-	18°	7°	8°	
maximum angle	-	160°	62°	160°	
Momentum acceptance	-	20%	15%	25%	

Beam time summary

Kinematics 1

Date	July 2023	July 2023	Sep 2023	April 2024	Spectromet er	Degree (°)	Momentum (MeV/c)
Beam energy (MeV)	855	855	855	855	A (proton)	-23.8	379
Beam current	400	400	400	700	B (e')	15.1	531
(IIA) Kinematic	1	2	2	2	C (π ⁺)	59.1	162
Milematic	I	Z	Z	2	Kinematics 2		
Target	Natural Li	Natural Li	Natural Li	Enriched ⁷ Li			
Target length	4.5	4.5	4.5	2.5	Spectromet er	Degree ()	Momentum (MeV/c)
(cm)					A (proton)	-23.8	417
Target width (mm)	0.75	0.75	0.75	1.0	B (e')	15.1	421
Effective time	~ 120 h	~ 120 h	~ 160 h	~ 160 h	C (π ⁺)	59.1	273

Momentum calibration

- Principle: Electron scattering with ¹⁸¹Ta and ¹²C target. Compare with the certain input momentum the correction factors can be obtained.
- Ebeam (MeV) = 180, 195, 210 with undulator (~10keV uncertainty); 225, 420 without undulator (~160 keV uncertainty)
- Electron scattering with several target positions and momentum settings.
- Calibration beam time has been done in May 2024.

Data analysis

Particle identification: according to the energy loss in scintillators.

上海 4月25日-28日

Data analysis

- Can the signal come from ⁶Li which can produce ⁵H? About 7.3% ⁶Li in natural lithium.
- The peak near 3 MeV can also be seen with enriched ⁷Li target.
- Replace ⁷Li with ⁶Li in analysis. The energy is about 10 MeV, which is much large than ⁵H ground state ~ 1.8 MeV.

Backup

Can the signal come from the C, N, and O in air?

Replace the target with C, N, or O. The obtained energies are also much larger than ground states.

Backup: Momentum calibration

- Scattering electron on ¹⁸¹Ta target
- $\Delta p = p_{in} p_{measured}$, energy losses in target and detector system are considered.
- Fit function: Landau (energy loss) and Gaussian (detector resolution) convolution.

Spectrometer	${\scriptstyle riangle p}$ (MeV/c)	Correction factor
А	0.136821	1.00032587
В	0.36578	1.00087166
С	-0.87746	0.99791517

Momentum calibration

- Scattering electron on ¹⁸¹Ta target
- $\Delta p = p_{in} p_{measured}$, energy losses in target and detector system are considered.
- Fit function: Landau (energy loss) and Gaussian (detector resolution) convolution.

Momentum calibration

Correction factor check: missing mass spectrum of ¹²C ground and excited states.

