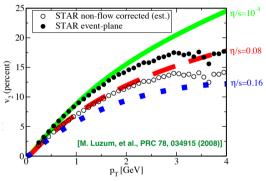
Shear and Bulk Viscosities of Gluon Plasma across the Transition Temperature from Lattice QCD

Cheng Zhang (张成)¹ collaborators: Heng-Tong Ding¹, Hai-Tao Shu¹

¹Institute of Particle Physics Central China Normal University

第二十届全国中高能核物理大会 Apr. 24-28, 2025, 上海

Introduction



• inputs for tranport/hydro models

 η/s quantifies the dissipation processes in the hydrodynamics.

G. Denicol et al., PRC 80, 064901 (2008)

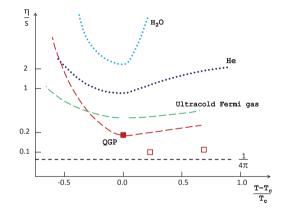
 Small η/s suggested by phenomenological interpretation of experimental data.

K. H. Ackermann et al., (STAR), PRL 86, 402 (2001)

 Extracting η/s from experiments needs accurate inputs: initial condition, EoS ...

U. Heinz et al., Annu. Rev. Nucl. Part. Sci. 63, 123 (2013)

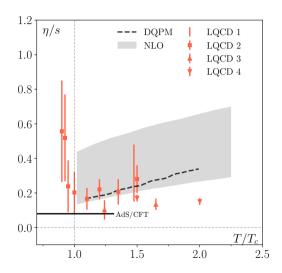
Introduction



S.Cremonini et al., JHEP 1208 (2012) 167

- η/s of QGP is sensitive to the phase transitions.
- Determinations of viscosities require theoretical inputs.

Determinations of viscosities from theory



1.5 $T_c \Rightarrow$ this work: $0.76 \leq T/T_c \leq 2.25$

Theoretical framework

$$\begin{split} G_{\rm shear}(\tau,\tau_{\rm F}) &= \frac{1}{10} \int \mathrm{d}^3 x \, \left\langle \pi_{ij}(0,\vec{0},\tau_{\rm F}) \, \pi_{ij}(\tau,\vec{x},\tau_{\rm F}) \right\rangle \\ \hline \mathbf{Renormalization} & a \to 0, \tau_{\rm F} \to 0 \\ \hline G(\tau) &= \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \, \frac{\cosh[\omega(1/2T-\tau)]}{\sinh(\omega/2T)} \, \rho(\omega,T) \\ \hline \mathbf{Inverse \ problem} \\ \hline \mathbf{Spectra \ reconstruction} \, \rho(\omega,T) \\ \hline \mathbf{Kubo \ formula} \\ \hline \eta(T) &= \lim_{\omega \to 0} \, \frac{\rho_{\rm shear}(\omega,T)}{\omega} \end{split}$$

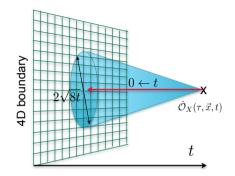
Key Points:

- Lattice computation of EMT correlators.
- Spectra reconstruction from the correlators.

Challenges:

- Severe UV fluctuations in the correlators.
- Theoretical uncertainty in the spectra reconstruction.

Noise reduction technique: gradient flow



Flow equation :

$$\begin{aligned} \frac{\mathrm{d}B_{\mu}(x,\tau_{\mathsf{F}})}{\mathrm{d}\tau_{\mathsf{F}}} &= D_{\nu}\,\mathcal{G}_{\nu\mu}(x,\tau_{\mathsf{F}})\\ \mathcal{B}_{\nu}(x,\tau_{\mathsf{F}}=0) &= \mathcal{A}_{\nu}(x) \end{aligned}$$

LO solution:

$$B_
u(x, au_{F}) \propto m{exp} \left(rac{-(x-y)^2}{\sqrt{8 au_{F}}^2/2}
ight) B_
u(y)$$

M. Lüscher, JHEP 08, 071 (2010)

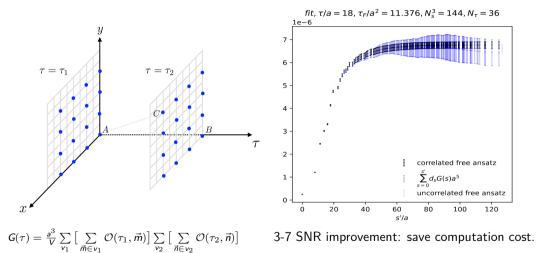
Smearing radius: $\sqrt{8\tau_{\rm F}}$. Advantage:

- ► The UV fluctuations strongly suppressed.
- Provide renormalization framework for EMT:

 $T_{\mu\nu}(\tau_F, \mathbf{x}) = c_1(\tau_F) U_{\mu\nu}(\tau_F, \mathbf{x}) + 4c_2(\tau_F) \delta_{\mu\nu} E(\tau_F, \mathbf{x})$

• Operator Product Expansion of $G(\tau, \tau_{\rm F})$ in $\tau_{\rm F}/\tau^2$.

Noise reduction technique: blocking fit



L. Altenkort et al. PRD 105, 094505 (2022)

Lattice setup

Pure SU(3) Yang-Mills gauge theory:

NSD

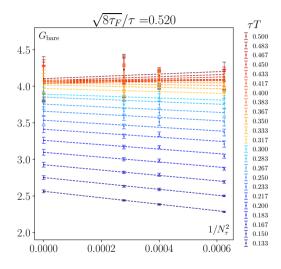
T/T_c	0.76			0.9			1.125			1.267			1.5			1.9			2.25		
N_{σ}	96	120	144	96	120	144	96	120	144	96	120	144	96	120	144	96	120	144	96	120	144
$N_{ au}$	40	50	60	40	50	60	32	40	48	24	30	36	24	30	36	16	20	24	16	20	24
#Conf.	5000		5000		5000		5000		5000		5000		5000								

Lattice spacing:

				7.3874		
<i>a</i> (fm)	0.02068	0.01746	0.01654	0.01397	0.01379	0.01164

H.-T. Ding, H.-T. Shu and CZ, work in progress

Continuum extrapolation



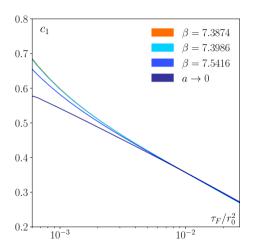
 $a \rightarrow 0$ at $0.9 T_c$ in the shear channel.

The joint fit Ansatz:

$$G_{\text{bare}}(N_{\tau}) = G_{\text{bare}}^{\tau T}(a = 0) + \left(b + m_1 \cdot \tau T + \frac{m_2}{\tau T}\right) / N_{\tau}^2$$
$$G_{\text{bare}} = \frac{G^{\text{t.l.}}(\tau T, \tau_{\text{F}})}{G^{\text{norm}}(\tau T)}$$

The Ansatz describes the data well.

Renormalization

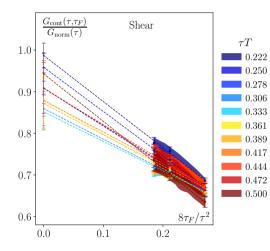


 $c_1 \& c_2$: renormalization constants matching Gradient Flow scheme to $\overline{\text{MS}}$ scheme.

$$\begin{aligned} T_{\mu\nu} \left(\tau_{\rm F}, x \right) &= c_1 \left(\tau_{\rm F} \right) U_{\mu\nu} \left(\tau_{\rm F}, x \right) + 4 c_2 \left(\tau_{\rm F} \right) \delta_{\mu\nu} E(\tau_{\rm F}, x) \\ c_1(\tau_{\rm F}) &= \frac{1}{g^2(\mu)} \sum_{n=0}^2 k_1^{(n)} (L(\mu, \tau_{\rm F})) \Big[\frac{g^2(\mu)}{(4\pi)^2} \Big]^n \end{aligned}$$

To control lattice spacing effects in c_1 : $\tau_{\rm F}/r_0^2 \geq 9\times 10^{-4}$

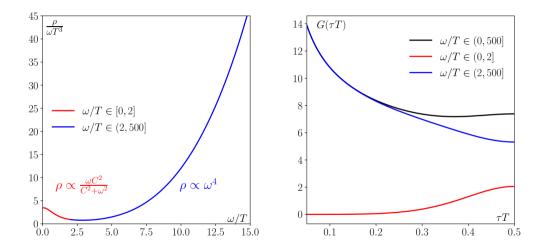
Flow time extrapolation



$$\begin{split} \tau_{\mathsf{F}} &\rightarrow 0 \text{ extrapolation Ansatz:} \\ \mathcal{G}(\tau_{\mathsf{F}}/\tau^2, \tau T) = \mathcal{G}_{\tau_{\mathsf{F}}=0}^{\tau \, \mathsf{T}} + \left(b + m_1 \cdot \tau \, T + \frac{m_2}{\tau \, T}\right) \cdot \tau_{\mathsf{F}}/\tau^2 \\ \mathsf{Flow time window:} \\ &\sqrt{8\tau_{\mathsf{F}}}/\tau \in [0.43, \, 0.52] \\ & \text{L. Altenkort et al. PRD 103, 114513 (2021)} \\ \mathsf{Avoid over smearing:} \\ &\sqrt{8\tau_{\mathsf{F}}} > \sqrt{2}a \end{split}$$

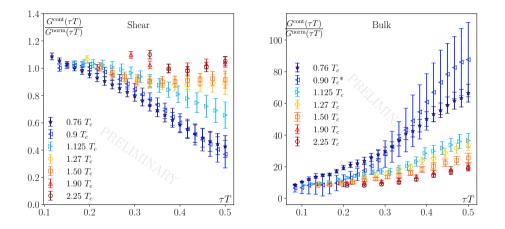
 $\tau_{\rm F} \rightarrow 0$ at $1.5\,T_c.$

Illustration of sensitivity of correlators to the transport peak



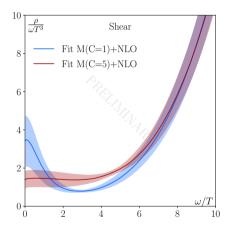
 $G(\tau T)$ at $\tau T \sim 0.5$ are more sensitive to the transport peak.

Normalized correlators in the continuum limit



Clear temperature dependencies for both channels. Negative slope for low temperatures in the shear channel.

Reconstructed spectral functions in the shear channel at 1.5 T_c



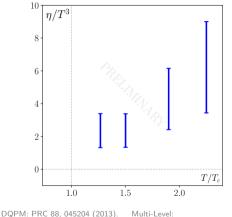
Spectral function at 1.5 T_c .

$$\begin{split} G(\tau) &= \int_0^\infty \frac{d\omega}{\pi} \frac{\cosh[\omega(1/2T-\tau)]}{\sinh(\omega/2T)} \rho(\omega,T) \\ \frac{\rho(\omega)}{\omega T^3} &= \frac{A}{T^3} \frac{C^2}{C^2 + (\omega/T)^2} + B \frac{\rho_{\text{pert}}(\omega)}{\omega T^3} \\ \rho_{\text{pert}}(\omega) \propto (\omega/T)^4 \end{split}$$

Y. Zhu et al. JHEP 03, 002 (2013) (shear)M. Laine et al., JHEP 09, 084(2011 (bulk)

C = 1, sharp peak, long-lived excitation. C = 5, broad peak, short-lived excitation.

Temperature dependencies of shear viscosity

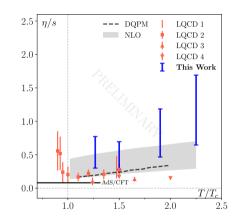


 DQFWI: FRC 06, 049204 (2013).
 Multit-Level:

 NLO: JHEP 03, 179 (2018).
 LQCD2: JHEP 04, 101 (2017).

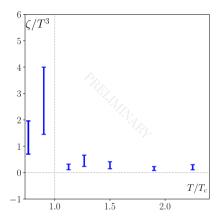
 Gradient Flow:
 LQCD3: PRD 76, 101701 (2007).

 LQCD1: PRD 108, 014503 (2023).
 LQCD4: PRD 98, 014512 (2018).

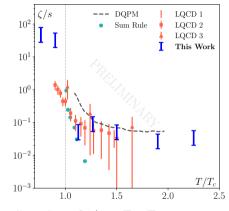


Mild increase with temperature in η/s at $T \ge 1.27 T_c$. η/s agrees with LQCD1 & NLO at $T \ge 1.27 T_c$.

Temperature dependencies of bulk viscosity



DQPM: PRC 88, 045204 (2013) Sum Rule: JHEP 09, 093 (2008) LQCD1 (GF): PRD 108, 014503 (2023). a = 0.0117 fm LQCD2 (ML): PRD 98, 054515 (2018). $a \ge 0.0253$ fm LQCD3 (ML): PRL 100, 162001 (2008). $a \ge 0.0475$ fm



Smaller values of ζ/s at $T > T_c$. ζ/s agrees with LQCD1 & LQCD2 at $T > T_c$.

Results

- ► Large and fine lattices are generated to extract the viscosities.
- High-precision EMT correlators are obtained via gradient flow and blocking methods.
- Temperature dependencies of η/s and ζ/s are investigated in SU(3) across the phase transition region.
- ▶ η/s increases mildly with temperature at $T \ge 1.27 T_c$.
- ► $\zeta/s(T < T_c) \gg \zeta/s(T > T_c)$, and ζ/s is most flat at $T \ge 1.13T_c$.
- ▶ The full QCD investigation (including dynamical quarks) is progressing.