

Overview of STAR Experiment

徐庆华,山东大学

第二十届全国中高能核物理大会暨 第十四届全国中高能核物理专题研讨会 2025年4月25日,上海

Outline

- Introduction
- Recent highlights from STAR experiment
 - QCD phase transition and QGP property
 - QCD phase transition, Critical-End-Point, QGP property, small system
 - Spin physics in heavy ion collisions
 - Global polarization, spin alignment, local polarization, UPC, CME
 - Polarized proton-proton collision
 - Spin structure of nucleon
- Summary and outlook

STAR Detector with BES-II and FWD upgrades

◆ STAR中国组: 华中师大、中国科大、上海应物所、近物所、复旦、清华、山东大学、湖州师大、华南师大、 广西师大、重庆大学、武汉科大、国科大、兰州大学

Overview of STAR

山东大学,徐庆华

A+A collisions: QCD phase transition & QGP property

- QCD phase transition
- Critical End Point
- QGP property
- Small system

QCD phase transition and Critical-End-Point

-RHIC Beam Energy Scan (BES) program

Search for Critical-End-Point: fluctuations & cumulants

• Enhanced fluctuations expected near CEP,

correlation length: ξ susceptibilities: χ_n^q expected to diverge

Related to correlation length: $C_2 \sim \xi^2$, $C_4 \sim \xi^7$ Finite size/time effects reduces ξ Higher order \rightarrow more sensitivity

Related to susceptibilities:
$$\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}$$

Direct comparison with lattice QCD, HRG, QCD-based model calculations

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06)

A. Bazavov et al., PRL109, 192302(12)

B. S. Borsanyi et al., PRL111, 062005(13)

$$\chi_q^{(n)} = rac{\partial^n \left[p/T^4 \right]}{\partial \left(\mu_q/T \right)^n}, \ q = B, Q, S$$

q = B, Q, S

Overview of STAR

山东大学,徐庆华

M. A. Stephanov, PRL 107 (2011) 052301 Assumption: Thermodynamic equilibrium Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 of conserved quantity existence of a critical region

Search for CEP: Net-proton cumulants

• High precision data from BES-II measurement from 7.7-27 GeV

- 罗晓峰 16:00

华中师大、科大

STAR: arXiv:2504.00817

• C_4/C_2 shows minimum around ~20 GeV comparing to models without CEP and peripheral data

Maximum deviation: 2~5σ at ~20 GeV

Search for CEP: Net-proton cumulants

华中师大、科大

- 罗晓峰 16:00

• New results from FXT energies $\sqrt{s_{NN}}$ = 3.2, 3.5 and 3.9 GeV:

- In 3.2 3.9 GeV, C₄/C₂ is consistent with values from UrQMD
- Analysis of 4.5 GeV and
 2 billion events from Run21
 3 GeV are ongoing

Baryon - Strangeness correlations

华中师大、广西师大

- CBS in central collisions agree with FRG and LQCD at higher energies, with UrQMD at lower energies, deviate from both in-between
- Agree with UrQMD at all energies in peripheral

Overview of STAR

Other observables for CEP

华中师大

NCQ scaling of elliptic flow

- Partonic collectivity at 7.7 GeV and above
- NCQ scaling for v₂ breaks completely at 3.2 GeV and below, indicates dominance of hadronic interactions

STAR, arXiv: 2504.02531

Number of constitute quark scaled v₂ ratios

华中师大

$p-\Omega$ correlations

华中师大

 $\sqrt{s_{NN}} = 200 \ GeV \ Isobar \ Collisions$

100

Relative Momentum k* (MeV/c)

HAL QCD

10-30%

150 200 0

50

100

150

200

• Use correlation femtoscopy to study Y-N interactions

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r} = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

$$\begin{split} S(\vec{r}): Source function \\ \Psi(\vec{k}^*, \vec{r}): Pair wave function \\ k^* &= \frac{1}{2} |\vec{p}_a - \vec{p}_b|, relative momentum \\ \vec{r}: relative distance \end{split}$$

-Lednicky-Lyuboshitz fit to extract strong interaction parameters

C(k*)

STAR Preliminary

100

50

• $\mathbf{p} \cdot \Omega^{-} + \overline{\mathbf{p}} \cdot \overline{\Omega}^{+}$ pairs

150

0-10%

200 0

50

$p-\Omega$ correlations

华中师大

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r} = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

$$\begin{split} S(\vec{r}): Source function \\ \Psi(\vec{k}^*,\vec{r}): Pair wave function \\ k^* &= \frac{1}{2} |\vec{p}_a - \vec{p}_b|, relative momentum \\ \vec{r}: relative distance \end{split}$$

-Lednicky-Lyuboshitz fit to extract strong interaction parameters

 $f(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right]^{-1} (\text{ No Coulomb })$ $f(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}(\text{ Include Coulomb })$

Light nuclei femtoscopy

Y-N interactions important to understand neutron star EoS and structure of hyper-nuclei

• High-statistics BES-II data at high μ_B

华中师大

- Doublet spin state d-A in pair is related to the bound state hypertriton
- Most accurate extraction of hypertriton Binding-Energy using d-Λ correlations

$$B_{\Lambda} = \frac{\gamma^2}{2\mu_{d\Lambda}}$$

• Hypernuclei production valuable tool to study Y-N interactions

- Extensive measurements of different hypernuclei from BES-II
- First measurement of A = 5 hypernuclei
- Thermal model over-predicts yields for most of the measured hypernuclei in the high µB region

Overview of STAR

Strange hadron production at BES-II 清华、华中师大、国科大

- Strangeness production at high baryon density is a good probe to study medium properties
- Strange hadron yield ratios deviate from GCE(Grand Canonical Ensemble) for collision energies
 below ~ 5 GeV
 Below ~ 5 GeV

STAR, PRC110, 054911 (2024); JHEP 2024, 139 (2024)

Overview of STAR

Strangeness production in different systems

- Strangeness enhancement and baryon/meson enhancement in QGP
- Ω/φ yield ratio enhanced in both O+O and isobar collisions from peripheral to central collisions
- Enhancement similar in central O+O and similar multiplicity isobar collisions

清华

Thermal dilepton & QGP temperature

华南师大、山大、科大 -杨驰 26日 9:00

- Direct access to temperature of QGP phase and phase transition
 - > Temperature extracted from low mass region: T^{LMR} is close to both T_{ch} and T_{c}
 - > TLMR in isobar 200 GeV shows higher values than T_{pc} (199 ± 6 [stat] ± 13 [sys] MeV)
 - ➤ Temperature extracted from intermediate mass region: T^{IMR} >T^{LMR} → temperature of QGP

Direct virtual photon production 山大、科大

-杨驰 26日 9:00

• Direct photon carry information on energy density, temperature, collective motion of QGP

- Yield of direct photons vs. multiplicity from 14.6 to 200 GeV
- The measured yields follow a common scaling from 14.6 to 200 GeV:

$\alpha = 1.43 \pm 0.04 \pm 0.04$

Small system - flow

山大

• Small collision system : p+p, p+A, He+A

STAR, PRL 130, 242301 (2023)

- ◆ Precision & systematic measurements of v_{2,3} in p+Au, d+Au & He+Au at STAR
 - > Reveal the importance of sub-nucleonic fluctuation in small systems

复旦

- A better geometry scan with d+Au and O+O
- Similar-sized systems, but large difference in ϵ_2 in the small systems d+Au and O+O

Both v₂ and v₃ scale well with eccentricities from sub-nucleon fluctuation between d+Au and O+O collisions

Small system - Jet quenching in O+O

• Do we see jet quenching in small systems?

Inclusive hadrons and jets

山大

聂茂武 27日 11:10

Semi-inclusive h triggered jets

◆ Indication of high-p⊤ jet suppression in O+O collisions

Overview of STAR

山东大学,徐庆华

Observation of the Antimatter Hypernucleus $\frac{4}{4}\overline{H}$

The heaviest anti-hypernucleus observed by STAR, with a significance of 4.7 σ

STAR, Nature 632, 1026 (2024)

3.95

⁴He + π^+ invariant mass (GeV/c²)

History of Anti-matter Discovery

Overview of STAR

山东大学,徐庆华

近物所

Nuclear imaging with high energy HIC

- Nuclear structure leaves imprints on vn and vn pT correlations
- Compare similar-sized systems U+U, Au+Au or Ru+Ru, Zr+Zr to gain insights on nuclear structure

$$\langle v_2^2 \rangle = a_1 + b_1 \beta_2^2,$$

$$\langle (\delta p_T)^2 \rangle = a_2 + b_2 \beta_2^2,$$

$$\langle v_2^2 \delta p_T \rangle = a_3 - b_3 \beta_2^3 \cos(3\gamma).$$

- Extracted U+U shape parameters β 2 and γ β 2U = 0.297 +/- 0.015; γ U = 8.50 +/- 4.80
 - Large quadrupole deformation, consistent with low-energy measurements and indication of small triaxiality in U+U ground state

复旦

Baryon number carrier: quarks or junctions? 科大、华中师大、山大

-唐泽波 26日 14:25

• What carries the baryon number?

$$Q = (N_{\pi^+} + N_{K^+} + N_p) - (N_{\pi^-} + N_{K^-} + N_{\bar{p}})$$
$$B = (N_n + N_n) - (N_{\bar{n}} + N_{\bar{n}}).$$

• $\langle B \rangle / \Delta Q \times \Delta Z / A$ vs. centrality in isobar collisions

$$\Delta Q = Q_{\text{Ru+Ru}} - Q_{\text{Zr+Zr}} \qquad STAR, \text{ arXiv: } 2408.15441$$

• $\langle B \rangle / \Delta Q \times \Delta Z / A \sim 2$ in central collisions

 \rightarrow higher than model calculations with valence quarks carrying baryon number

Overview of STAR

Observation of proton-antiproton pairs from vacuum 科大、复旦

• Breit-Wheeler process has been observed, how about higher excitation of QED _吴鑫 26日 11:55 vacuum ?

• Proton-antiproton pair production in in Au+Au ultra-peripheral collisions at 200 GeV

Overview of STAR

Spin in heavy ion collisions

- Hyperon global polarization
- Local polarization
- Vector meson spin alignment
- Spin in ultra-peripheral collision (UPC)
- Chiral Magnetic Effect

Global spin polarization in heavy ion collisions _梁作堂 10:30

• Globally polarized quark gluon plasma (QGP) in non-central relativistic heavy ion collisions

Zuo-tang Liang & Xin-Nian Wang, PRL94, 102301(2005); PLB629, 20(2005).

Global spin polarization in heavy ion collisions

A global polarization, ϕ spin alignment observed in non-central Au+Au collisions at STAR

STAR, Nature 548, 62(2017)

> Open a new direction in high energy nuclear physics

Recent results on global polarization

- ◆ Hyperon polarization in isobar collisions: system size dependence
 - > No difference observed in Ru+Ru and Zr+Zr

山大

Recent results on global polarization

- 苟兴瑞 26日 17:40

山大

- Precision BES-II data (10 times more statistics than BES-I): further confirm the energy dependence
- BES-II data found no splitting between $\Lambda(\overline{\Lambda})$ polarization
 - > No magnetic effect?

New results on $\boldsymbol{\Xi}$, $\boldsymbol{\Omega}$ global polarization

山大、近物所

- 苟兴瑞 26日 17:40

- ◆ First measurement of Ξ, Ω polarization with BES data, significant polarization observed, decrease trend with collision energy
- No significant difference between Λ and Ξ global polarization within uncertainties
- A hint of larger Ω polarization than Λ and Ξ in low energies

Hyperon polarization along beam direction

• Recent hyperon local polarization measurements in Ru+Ru, Zr+Zr

- First observation of local polarization w.r.t. the 3rd-order event plane
- Hydrodynamic models with shear term reasonably describes the data for central collisions, but not for peripheral

山大

Result of local Polarization from BES-II

近物所、山大 -胡强 27日 9:40

- Hints of sign change of $P_{2,z}$ at 7.7 GeV, baryon diffusion with Λ -scenario predicts sign change opposite to data
- $P_{2,y}$ of Λ increase with decreasing energy and current models cannot describe the results

Result of Baryonic Spin Hall Effect

近物所、山大

• Spin polarization by the SHE depends on momentum: $P \propto \boldsymbol{p} \times (q_B \nabla \mu_B)$

- Obtained the net polarization $P_{2,y}^{net}$ and $P_{2,z}^{net}$
- No significant energy dependence are observed within uncertainties

Vector meson spin alignment

• Vector mesons' ρ_{00} from Au+Au at STAR: $\rho_{00}(\phi) > 1/3$ *STAR*, <u>Nature</u> 614, 244 (2023)

 Polarization by a strong force field of vector meson can produce large deviation for φ spin alignment: J.P. Lv, Z.H. Yu, Z.T. Liang, Q. Wang, X.N. Wang, PRD 109, 114003 (2024)

X. Sheng, L. Oliva, Z.T. Liang, Q. Wang and X.N. Wang, PRL131,042304(2023)
X. Sheng, L. Oliva, and Q. Wang, PRD101,096005(2020)
X. Sheng, Q. Wang, and X.N. Wang, PRD102,056013 (2020)

复旦、近物所

Global spin alignment of J/ψ

• Global spin alignment for J/ψ : heavy quarkonium, different mechanism as ϕ -杨钱 26日 9:40

Decay channel: $J/\psi \rightarrow e^+e^ W(\theta) \propto \frac{1}{3+\lambda_{\theta}} \left(1+\lambda_{\theta}\cos^2\theta\right), \qquad \lambda_{\theta} = (1-3\rho_{00})/(1+\rho_{00})$ $W(\theta) \propto \left[(1+\rho_{00})+(1-3\rho_{00})\cos^2\theta\right]$

• Measurements of J/ψ spin alignment in A+A w.r.t. reaction plane at STAR:

Overview of STAR

山大、复旦、科大

Linearly polarized γg collision: angular modulation in UPC

Tomography of atomic nuclei via "new double-slit experiment at Fermi scale"

STAR, Science Advances 9, eabq3903 (2023)

"Entanglement Enabled Spin Interference"

> $\cos(2\Delta \phi)$ due to quantum interference & photon polarization

H. Xing, C. Zhang, J. Zhou, Y.J. Zhou, JHEP10, 64 (2020)

 \blacktriangleright Sensitive to nuclear geometry \rightarrow strong interaction radius

Y.-G. Ma, Nucl. Sci. & Tech. 34:16 (2023)

山大、科大

-查王妹

27日15:00

Coherent J/ ψ production and polarization

- J/ψ production in photo-nuclear collisions
- Linearly polarized photons, along impact parameter direction

- Polarization of photo produced J/ψ, correlated with reaction plane (impact parameter direction)
- Could be used to access initial geometry in photon induced processes

科大、山大

-查王妹

RuRu + ZrZr at $\sqrt{s_{NN}} = 200 \text{GeV}$

STAR preliminary

 $0.4 |\eta_{e}| < 0.8, p_{T}^{e} > 0.5 \text{ GeV/c } |y_{ee}| < 0.8$

27日15:00

Strong magnetic field: evidence from directed flow 复旦、近物所

• Electromagnetic field could introduce charge-dependent directed flow

- Significant negative values in peripheral events are consistent with the electromagnetic field effects with the dominance of the Faraday induction + Coulomb effect
- Positive value in central collisions attributed to the transported-quark contributions

Overview of STAR

Proton spin structure study at RHIC

• Goal of RHIC spin program: spin structure of nucleon

Overview of STAR

Dijet A_{LL} clearly support positive gluon polarization Δg :

RHIC Cold QCD White Paper, arXiv2302.00605

Gluon spin accounts for ~40% of proton spin!

山东大学,徐庆华

山大

Nucleon 3d-structure & TMD distribution

 Transverse momentum dependent distribution (TMD) parton distribution function (PDF) and fragmentation functions (FF):

TMD handbook: ariXiv-2304.03302

Transverse Single Spin Asymmetry of Jet

山大

• A_N for inclusive jet

• A_N for π^{\pm} tagged inclusive jet

✓ π^{\pm} tagged to enhance quark jet fraction

Sensitive to twist-3 correlators associated with the gluon Sivers function

Overview of STAR

山东大学,徐庆华

Collins asymmetries in p+p collision

- Collins asymmetry observed in p+p collisions → testing TMD universality from SIDIS
- Striking comparison between 200 and 500 GeV → critical constraints TMD evolution

Overview of STAR

山东大学, 徐庆华 j_T : pion's transverse momentum relative to jet axis 45

$\Lambda(\overline{\Lambda})$ Spin Transfer D_{LL} and D_{TT}

- Longitudinal spin transfer D_{LL}
 - > Related to helicity g_1 and polarized FF G_1

$$D_{LL}^{\Lambda} \equiv \frac{d\sigma[p^{+(-)}p \to \Lambda^{+(-)}X] - d\sigma[p^{+(-)}p \to \Lambda^{-(+)}X]}{d\sigma[p^{+(-)}p \to \Lambda^{+(-)}X] + d\sigma[p^{+(-)}p \to \Lambda^{-(+)}X]} = \frac{d\Delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$

- Direct probe of the polarized fragmentation function G₁ and H₁
- first measurement of D_{LL} vs. z and D_{LL} vs. z of $\Lambda(\overline{\Lambda})$
- *D_{LL}* results are consistent with model calculation

STAR, PRD109, 012004(2024)

- Transverse spin transfer D_{TT}
 - > Related to transversity h_1 and polarized FF H_1

$$D_{TT}^{\Lambda} \equiv \frac{d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\uparrow(\downarrow)}X] - d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\downarrow-(\uparrow)}X]}{d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\uparrow(\downarrow)}X] + d\sigma[p^{\uparrow(\downarrow)}p \to \Lambda^{\downarrow-(\uparrow)}X]} = \frac{d\delta\sigma^{\Lambda}}{d\sigma^{\Lambda}}$$

Overview of STAR

山大

- First measurements of polarization of $\Lambda(\overline{\Lambda})$ within jet in *pp* collisions at \sqrt{s} = 200 GeV
- Testing universality of polarizing FF when combined with e^+e^- data

Λ - Λ pair spin correlation in p+p

- Non-zero spin correlation for short range Λ anti Λ pairs
- Correlation consistent with zero for long range pairs and other pairs

◆ Spin correlation analysis in heavy ion collision is ongoing 复旦、近物所、山大、广西师大

Overview of STAR

STAR: 25 years and beyond

- 25 years of expanding the horizons on high energy nuclear physics
- Recent highlights from STAR:
 - QCD phase transition and QGP property
 - QCD phase transition, Critical-End-Point, QGP property, small system
 - Spin physics in heavy ion collisions
 - Global polarization, spin alignment, local polarization, UPC, CME
 - Polarized proton-proton collision
 - Nucleon spin structure: spin & TMD functions
- Run 23 25: STAR forward upgrade (completed 2022)
 - High statistics Au+Au, p+p data collection

$\sqrt{s_{\rm NN}}$	Species	Number Events/	Year
(GeV)		Sampled Luminosity	
200	Au+Au	$8B+5B / 1.2 \text{ nb}^{-1}+20.8 \text{ nb}^{-1}$	2023+2024+2025 (20 cryo-weeks)
200	Au+Au	$8B+9B / 1.2 \text{ nb}^{-1}+28.6 \text{ nb}^{-1}$	2023+2024+2025 (28 cryo-weeks)

Thanks to many colleagues in help preparing the slides

Apologies for any missing topics/results !

Search for CEP: Net-proton cumulants

• New results from FXT energies $\sqrt{s_{NN}}$ = 3.2, 3.5 and 3.9 GeV:

0-5% Au+Au Collisions at RHIC

华中师大,科大

Baryonic Spin Hall Effect (SHE)

- Hall effect: $P \propto \boldsymbol{p} \times \boldsymbol{E}$
- Spin polarization by the SHE depends on momentum: $P \propto \boldsymbol{p} \times (q_B \nabla \mu_B) \longrightarrow \text{driven by } \nabla \mu_B$
- As the energy decreases, the system generates a stronger baryon chemical potential gradient
- Sign of $P_{2,z}^{net}$ is opposite with and without SHE at BES energies $P_{2,z} = \frac{\langle \cos\theta_p^* \sin[2(\phi_{\Lambda} - \Psi_2)] \rangle}{\alpha_H \langle (\cos\theta_p^*)^2 \rangle} \qquad P_{2,z} = \frac{\langle \cos\theta_p^* \sin[2(\phi_{\Lambda} - \Psi_2)] \rangle}{\alpha_H \langle (\cos\theta_p^*)^2 \rangle}$

Shuai Y. F. Liu, Yi Yin, Phys.Rev.D 104 , 054043 (2021) B. Fu et al., arXiv:2201.12970v1

