

Overview of BESIII

周小蓉(代表BESIII合作组) 中国科学技术大学

第二十届全国中高能核物理大会 暨第十四届全国中高能核物理专题研讨会 2025.4.24-28,上海

陶粲能区的独特性和丰富的物理

- 微扰与非微扰QCD的过渡能区
- 丰富的共振结构、巨大的案偶素产生截面、阈值产生强子对和τ轻子对
- 大量**奇特**量子数强子、胶子态、多夸克态、夸克胶子混合态

Beijing Electron Positron Collider II

Beijing Spectrometer (BESIII)

Ageing problems of inner MDC

Upgrade inner drift chamber with CGEM

A Wishlist of BESIII since 2019

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current ($T_{\rm C}$) or upgraded ($T_{\rm U}$) machine. The **BESIII White Paper** machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
$1.8 - 2.0 { m ~GeV}$	R values	N/A	$0.1 { m ~fb^{-1}}$	$60/50 \mathrm{~days}$
	Nucleon cross-sections		(fine scan)	
2.0 - $3.1~{\rm GeV}$	R values	Fine scan	Complete scan	$250/180 { m ~days}$
	Cross-sections	(20 energy points)	(additional points)	
J/ψ peak	Light hadron & Glueball	$3.2 { m ~fb^{-1}}$	3.2 fb^{-1} N/A	
	J/ψ decays	(10 billion)	(10 billion)	
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 { m ~fb^{-1}}$	$4.5 { m ~fb^{-1}}$	150/90 days
	Charmonium decays	(0.45 billion)	(3.0 billion)	
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb^{-1}}$	20.0 fb^{-1}	610/360 days
$3.8 - 4.6 {\rm GeV}$	R values	Fine scan	No requirement	N/A
	XYZ/Open charm	(105 energy points)		
$4.180 \mathrm{GeV}$	D_s decay	$3.2 { m ~fb^{-1}}$	$6 {\rm fb}^{-1}$	140/50 days
	XYZ/Open charm			
	XYZ/Open charm			
4.0 - $4.6~{\rm GeV}$	Higher charmonia	$16.0 \ {\rm fb}^{-1}$	$30 {\rm ~fb^{-1}}$	$770/310 {\rm days}$
	cross-sections	at different \sqrt{s}	at different \sqrt{s}	
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 { m ~fb^{-1}}$	$15 { m fb}^{-1}$	1490/600 days
	cross-sections	at 4.6 GeV	at different \sqrt{s}	
$4.74 {\rm GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	100/40 days
$4.91 {\rm GeV}$	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 { m ~fb^{-1}}$	120/50 days
$4.95 \mathrm{GeV}$	Ξ_c decays	N/A	$1.0 { m ~fb^{-1}}$	130/50 days

See G.S.Huang's talk

BESIII Data Samples

- >40 pb⁻¹ data collected
- Large Charmonium(-like) events
 - $1 \times 10^{10} J/\psi$ events
 - $2.7 \times 10^9 \psi'$ events
 - 20 fb⁻¹ at 3.773 GeV ($D\overline{D}$ pair)
- Unique scan data:
 - Baryon pair threshold
 - τ lepton threshold
 - Chic1 threshold
 - Λ_c pair threshold
 - R scan
 - XYZ scan

Threshold/pair production, quantum entanglement, clean env. etc.

BESIII Physics Highlights

- Inclusive production and **fragmentation functions**
- Probe **EM structure** of baryons
- **Hyperon physics** from J/ψ and $\psi(3686)$ decays
- EM and strong interference between vector meson
- Light hadron & searches of exotics
- Charmonium and XYZ spectroscopy
- Charm physics: $D^{0/\pm}$, D_s^+ , Λ_c^+

Overview of BES III @ 第十九届中高能核物理大会 http://cicpi.ustc.edu.cn/indico/contributionDisplay.py?contribId=275&se ssionId=8&confId=3658

Fragmentation Functions (FFs)

- Fragmentation functions (FFs) encode the long-distance dynamics of quark/gluons hadronization in a hard-scattering process, where e^+e^- collider provide the cleanest input for FFs fitting
- To accurately extract **Parton Distribution Functions**, precise FFs are required
- There lacks FFs data at low energy region from e^+e^- collider

Unpolarized FFs at BESIII

 $\Lambda\Lambda\Lambda$

• Semi-inclusive hadron production: $E_p \frac{d\sigma_{e^+e^- \to hX}}{d^3p}(s, p) = \sum_f \int \frac{dz}{z^2} D_{h/f}(z, \mu^2) \times E_k \frac{d\hat{\sigma}_{e^+e^- \to \hat{k}X}}{d^3\hat{k}}(s, \hat{k}, \mu^2) + \mathcal{O}\left[\frac{A_{\text{QCD}}^2}{Q^2}\right]$ • Experimental observable $\frac{1}{\sigma_{tot}(e^+e^- \to hadrons)} \frac{d\sigma(e^+e^- \to h + X)}{dP_h} \sim \sum_q e_q^2 D_1^{h/q}(z)$ at leading order

• $D_q^h(z)$: FFs of a quark into a hadron, with hadron carries $z = 2E_h/\sqrt{s}$ of parton's momentum

• To well describe data, **NNLO accuracy**, **hadron mass correction**, **higher twist contributions** etc. are needed

Unpolarized FFs at BESIII

- $\pi^{+/-} + X$ consistent with $\pi^0 + X$
- $K^{+/-} + X$ systematically higher than $K_s + X$ by a factor of ~ 1.4.
- Global data fit at NNLO under Nonperturbative Physics Collaboration
- Results support the validity of **isospin symmetry** in parton fragmentation processes.

Electromagnetic Form Factors of Baryons

- EMFFs are **fundamental properties of the baryon**
 - Connected to charge, magnetization distribution
 - Crucial testing ground for models of the nucleon internal structure

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{p}}F_{2}(q^{2})$$

Sachs FFs: $G_{E}(q^{2}) = F_{1}(q^{2}) + \tau\kappa_{p}F_{2}(q^{2})$
 $G_{M}(q^{2}) = F_{1}(q^{2}) + \kappa_{p}F_{2}(q^{2})$

EMFFs of Λ_c^+ and nucleon

 $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$

BESIII 2023

• BESIII 2018

Threshold

Belle

4.8

BESIII (this work)

---- VMD [39]

2.4 2.6 2.8

---- Modified Dipole [38]

— DR Mainz Model [40]

Production threshold

3

- A step in $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$, followed by a plateau. Threshold effects observed in various baryons
- Similar oscillation in Λ_c^+ $|\mathbf{G}_{\mathbf{F}}/\mathbf{G}_{\mathbf{M}}|$ distribution as proton observed
- **Non-zero G**_E of **neutron** indicates inner charge distribution

EMFF phase of hyperons

• The process $e^+e^- \rightarrow \Sigma^+ (\rightarrow p\pi^0)\overline{\Sigma}^+ (\rightarrow \overline{p}\pi^0)$ is formalized by joint angular distribution:

 $\sqrt{1 - \alpha_{\psi}^{2} \sin(\Delta \Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} (\alpha_{-} n_{1,y} + \alpha_{\gamma} n_{2,y})}$ Polarized part

- $|G_E/G_M|$ and $\Delta \Phi$ line-shape is compared with $\overline{Y}Y$ model (PRD 103, 014028 (2021)), different tendency in $\Delta \Phi$
- The still increasing relative phase indicates the **asymptotic threshold** has not yet been reached

More details on baryon EMFFs see J. F. Hu's talk

Hyperon Physics at BESIII

10 billion J/ψ events collected

- Large BRs in J/ψ decays \rightarrow tens millions hyperons pairs
- Transversely polarization due to non-zero phase of two helicity amplitudes

Anisotropic baryon decay distribution

$$\frac{dN}{d\cos\theta} = \frac{N_0}{2}(1 + \alpha_{\Lambda}P_{\Lambda}\cos\theta)$$

$B\overline{B}$ mode	$\mathcal{B}(imes 10^{-3})$	$lpha_{oldsymbol{\psi}}$	$\Delta \Phi$	$P_y^{\max}/\cos\theta^{\max}$
$J/\psi ightarrow \Lambda\overline{\Lambda}$	1.89 ± 0.09	0.475 ± 0.003	0.752 ± 0.008	25% / 0.64
$J/\psi ightarrow \Sigma^+ \overline{\Sigma}^-$	1.07 ± 0.04	-0.508 ± 0.007	-0.27 ± 0.02	16% / 0.82
$J/\psi ightarrow \Sigma^0 \overline{\Sigma}{}^0$	1.17 ± 0.03	-0.45 ± 0.02	0.09 ± 0.02	5% / 0.80
$J/\psi ightarrow \Xi^0 \overline{\Xi}{}^0$	1.17 ± 0.04	0.66 ± 0.06	1.16 ± 0.02	27% / 0.61
$J/\psi ightarrow \Xi^- \overline{\Xi}^+$	0.97 ± 0.08	0.59 ± 0.02	1.21 ± 0.05	30% / 0.62

Hyperon Physics: non-leptonic decays

• Observables:

$$\Gamma = \frac{e^2 G_F^2}{\pi} \left(|S|^2 + |P|^2 \right)$$

$$\alpha_Y = \frac{2 \operatorname{Re} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} \left(S^* P \right)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

$$\beta_Y = \sqrt{1 - \alpha_Y^2} \sin \phi_Y \qquad \gamma_Y = \sqrt{1 - \alpha_Y^2} \cos \phi_Y$$

• A joint angular analysis of $J/\psi \to Y^-\overline{Y}^+$

$$\mathcal{W}(\xi;\omega) = \sum_{\mu,\nu=0}^{3} C_{\mu\nu} \sum_{\mu'\nu'=0}^{3} a_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\Xi} a_{\mu'0}^{\Lambda} a_{\nu'0}^{\bar{\Lambda}}$$

$$\begin{aligned} & \text{Spin density matrix } (J/\psi \to Y^- \overline{Y}^+): \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 0^- \text{decay:} \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{For } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{decay:} \\ & \text{for } \frac{1}{2}^+ \to \frac{1}{2}^+ + 1^- \text{dec$$

Hyperon Physics: non-leptonic decays

Hyperon Physics: non-leptonic decays

	-	
Deacay	$\mathcal{B} imes 10^3$	α_{γ}
$\Sigma^+ \rightarrow p\gamma$	1.04(6)	-0.76(8)
$\Sigma^+ \to p\gamma$	0.996(28)	-0.652(56)
$\Lambda o n\gamma$	0.832(66)	-0.16(11)
$\Xi^0 \to \Sigma^0 \gamma$	3.33(10)	-0.69(6)
$\Xi^0 \rightarrow \Lambda \gamma$	1.17(7)	-0.70(7)
$\Xi^0\to\Lambda\gamma$	1.347(85)	-0.741(65)
$\Xi^- ightarrow \Sigma^- \gamma$	0.13(2)	_

*A recent review on radiative weak decay: CPL 42, 032401 (2025)

Polarization of hyperon disentangled
Most precise decay parameters obtained
More CPV observable constructed

A = α+α/α - α
A = α+α/α - α
B = β+β/β-β

A_Λ = -0.0025 ± 0.0046 ± 0.0011 (10billion J/ψ)

A_Σ = -0.004 ± 0.037 ± 0.010 (1.3 billion J/ψ)
A_Ξ = 0.006 ± 0.013 ± 0.006 (1.3 billion J/ψ)
Δφ_Ξ = -0.005 ± 0.014 ± 0.003 (1.3 billion J/ψ)
ξ^P_Λ - ξ^S_Λ = (-1.1 ± 2.1)° ∈ {-4.5°, +2.1°} (90% C.L.)

Hyperon Physics: Semi-leptonic decay and rare decay

Hyperon-nucleon Interaction

More details on hyperon physics see Tao Luo's talk

Strong and EM Interference in Vector Meson Decay

- With the **unique scan data** in the vicinity of **charmonium**, the relative phase between different interactions can be obtained.
 - SU(3) predicts phase between A_{3g} and A_{EM} is $\Phi_{3g,EM} \sim 90^{\circ}$
 - Phase between A_{EM} and A_{cont} : $\Phi_{\gamma,cont.} = 0^{\circ}$ from $e^+e^- \to J/\psi \to \mu^+\mu^-$
 - Phase between A_{3g} and A_{EM} is $\Phi_{3g,EM} \sim 90^{\circ}$ from $e^+e^- \rightarrow J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
 - More channels on 1^-0^- , 0^-0^- , 1^-1^- , 1^+0^- , $B\overline{B}$ need to be checked

Strong and EM Interference in Vector Meson Decay

(a) - Data - Data 10^{3} χ^2 /ndf=1.36/6 χ^2 /ndf=5.66/6 - Total fit ----- \psi(3686) peak Continuum Cross Section (pb) $\psi(3686) \rightarrow p \bar{p} \pi^0$

٠

3.71

3.7

 $\times 0$

 ϕ (°)

 65.0 ± 6.7

 -68.9 ± 5.7

 ϕ (°)

 58.9 ± 14.1

 -63.8 ± 12.1

3.67

10³

Cross Section (pb)

10

 ≈ 0

 $\psi(3686) \rightarrow p \bar{p} \pi^0$

Constructive solution

Destructive solution

Constructive solution

Destructive solution

 $\psi(3686) \rightarrow p \bar{p} \eta$

3.67

.

3.69

√s (GeV)

 $\mathcal{B}_f \Gamma_{ee}$ (0.1 eV)

 3.12 ± 0.26

 4.28 ± 0.32

 $\mathcal{B}_f \Gamma_{ee}$ (0.1 eV)

 1.44 ± 0.15

 1.98 ± 0.16

3.68

PRD 111, 032011 (2025)

2

3

 $B(\psi(3770) \rightarrow K_{S}^{0}K_{L}^{0})$ (10⁻⁵)

5

PRL 132, 131901 (2024)

The deviations from PDG results are attributed mainly to the absence of **interference effects** in the previous measurements.

Hadron Spectroscopy

5 Y(4790) Y(4710) Y(4500) Y(4390) Y(4320) Z_c(4020)[±]Z_c(4020) Y(4230) 4 Z cs (3985)* (3900) [•]Z _c(3900)^{*} Mass (GeV/c²) **ັψຸ(3823)** 30 new hadrons at BESIII 3 X(2600) N(2570) •f₀(2480) [•]X(2500) X(2370) N(2300) X(2356) X(2262) w(2250) X(2120) X(2000) 2 X(1870) .(1900) X(1840) _η**,(1855)**▲ X(1880) a (1817) 1 2014 2012 2016 2018 2020 2022 2024 Date of arXiv submission

Updated from Sci. Bull., 68, 2148-2150 (2023)

Glueballs and Hybrids

- Charmonium decays are ideal hunting grounds for light glueballs and exotics
 - "Glue-rich" environment
 - Clean high statistics data samples from e^+e^- production

- Experimental evidence for three isovector states with $J^{PC} = 1^{-+}$:
 - $\pi_1(1400), \pi_1(1600), \pi_1(2015)$

Glueballs and Hybrids at BESIII

New Light Hadrons

 $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ PRL 132, 151901 (2024)

PRL134, 131903 (2025)

Properties of X(3872)

New vectors: Y(4500), Y(4710) and Y(4790) etc.

Search for Z_{cs} states

Charm Physics

- **CKM matrix** elements are **fundamental SM parameters** that describe the mixing of quark fields due to weak interaction
- Leptonic and semi-leptonic decays of charmed hadrons (D^{0/±}, D_s⁺, Λ_c⁺) provide ideal testbeds to explore weak and strong interactions

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}V_{us}V_{ub}\\ V_{cd}V_{cs}V_{cb}\\ V_{td}V_{ts}V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

$$\Gamma = \frac{G_{F}^{2}}{8\pi}|V_{cq}|^{2}|f_{D_{(s)}^{+}}|^{2}m_{\ell}^{2}m_{D_{(s)}^{+}}(1-m_{\ell}^{2}/m_{D_{(s)}^{+}}^{2})^{2}$$

$$\frac{d\Gamma}{dq^{2}} = X\frac{G_{F}^{2}|\vec{p}_{F}|^{3}}{24\pi^{3}}|V_{cq}|^{2}|f_{+}(q^{2})|^{2}$$

Data sample	E _{cm} (GeV)	Lum. (fb ⁻¹)	Single-tag yields (\times 10 ⁶)
$\psi(3773) \to D\overline{D}$	3.773	20.3	$\overline{D}^0 \sim 16.9; D^- \sim 11.0$
$e^+e^- \rightarrow D_s^{\pm} D_s^{*\mp}$	4.128-4.226	7.33	<i>D</i> _s ⁻ ~0.8
$e^+e^- \rightarrow D_s^{*+}D_s^{*-}$	4.237-4.669	10.64	$D_{s}^{-} \sim 0.12$
$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$	4.6-4.95	6.5	<i>Λ_c</i> ~0.15

Low backgrounds and high efficiency; missing technique; Quantum correlations and CP-tagging are unique

Charm Physics: (Semi-)Leptonic Decay

• $|V_{cs}| \otimes |V_{cd}|$: better test on CKM matrix unitarity

 $D \to \bar{K}\ell^+ \nu_\ell$

 $\sigma = 0.47\%$

 $D_s \to \ell^+ \nu_\ell$

Charm Physics: (Semi-)Leptonic Decay

Lepton Flavor Universality tests:

$E_{\rm cm}$ (GeV)	Mode	D_s^+ decay	B (%)	$f_{D_s^+} V_{cs} $ (MeV)
4.237-4.699	$D_s^{*\pm}D_s^{*\mp}$	$\tau_{\rm e}^+\nu_{\tau}, \tau_{\mu}^+\nu_{\tau}, \tau_{\pi}^+\nu_{\tau}, \tau_{\rho}^+\nu_{\tau}$	$5.60 \pm 0.16 \pm 0.20$	$252.7 \pm 3.6 \pm 4.5 \pm 0.6$
4.178-4.226	$D_s^{\pm} D_s^{*\mp}$	$\tau_{ ho}^+ \nu_{ au}$	$5.30 \pm 0.25 \pm 0.20$	$245.8\!\pm\!5.8\!\pm\!4.6\!\pm\!0.5$
4.178-4.226	$D_s^{\pm} D_s^{*\mp}$	$\tau_{e}^{'+}\nu_{ au}$	$5.27 \pm 0.10 \pm 0.13$	$245.1\!\pm\!2.3\!\pm\!3.0\!\pm\!0.5$
4.128-4.226	$D_s^{\pm} D_s^{*\mp}$	$ au_{\pi}^{+} ar{ u}_{ au}$	$5.44 \pm 0.17 \pm 0.13$	$249.0 \pm 3.9 \pm 3.0 \pm 0.5$
4.128-4.226	$D_s^{\pm} D_s^{*\mp}$	$ au_{\mu}^{+}ar{ u}_{ au}$	$5.37 \pm 0.17 \pm 0.15$	$247.4 \!\pm\! 3.9 \!\pm\! 3.5 \!\pm\! 0.5$
Average			5.38 ± 0.09	$247.7 \pm 2.1 \pm 0.5$
4.237-4.699	$D_s^{*\pm}D_s^{*\mp}$	$\mu^+ u_\mu$	$0.547 \pm 0.026 \pm 0.016$	$246.5 \pm 5.9 \pm 3.6 \pm 0.5$
4.128-4.226	$D_s^{\pm} D_s^{*\mp}$	$\mu^+ u_{\mu}$	$0.5294 \pm 0.0108 \pm 0.0085$	$242.5\!\pm\!2.5\!\pm\!1.9\!\pm\!0.5$
Average			0.539 ± 0.009	$244.6 \pm 2.0 \pm 0.5$

Combined results:

$$R_{D_s} = \frac{\Gamma(D_s^+ \to \tau^+ \nu_{\tau})}{\Gamma(D_s^+ \to \mu^+ \nu_{\mu})} = 9.98 \pm 0.24$$

Consistent with SM prediction: 9.75

Charm Physics: (Semi-)Leptonic Decay

Decay constant f_{D^+} and transition form factors $f_+(0)$:

The most precise result $f_{+}^{D \to \overline{K}}(0)$ is consistent with LQCD calculation with 2.5 σ

Charm Physics: Hadronic Decay

Amplitude analysis: Observation of $D^+ \to a_0(980)^+ K_s^0$, $D^0 \to a_0(980)\pi$, $D^0 \to K^*(892)K_s^0$, $D_s^+ \to f_0(980)\rho^+$, $\Lambda_c \to a_0(980)\Lambda$ etc.

Charm Physics: Hadronic Decay

- Quantum coherent effects:
 - $\Gamma(S|T) \propto A_S^2 A_T^2 [(r_D^S)^2 + (r_D^T)^2 2R_S R_T r_D^S r_D^T \cos(\delta_D^T \delta_D^S)]$
 - Tags in analysis:
 - Flavour tags, CP eigenstates, self-conjugated tags
- Strong phase differences of neutral *D* decays \rightarrow contribution on the γ measurement

Charm Physics: Hadronic Decay

Summary

- BESIII has a rich and fruitful program in hadron spectroscopy and hadron structure, hyperon physics and charm physics etc..
- The installation of **BEPCII upgrade** and **BESIII inner tracker** were finished.
- With **luminosity** tripled and beam energy increased to **2.8 GeV**, BESIII is expected to provide more results in the upcoming operations.

BEPCII-U Operation tentative plan

Jul. 2024 – Dec. 2024 Summer shutdown for installation
Jan. 2025 – Jul. 2025 Commissioning & Data taking @1.843GeV y (3686)
Aug. 2025 – Sep. 2025 Summer shutdown
Oct. 2025 – Jul. 2026 Data taking around beam energy 2.35GeV (project test)
Aug. 2026 – Sep. 2026 Summer shutdown & LINAC final upgrade
Oct. 2026 – Sep. 2028 Data taking within beam energy 2.1-2.5GeV
Sep. 2028 – Jul. 2030 Data taking within beam energy 2.5-2.8GeV

Thanks! 谢谢!