

Overview of the Belle II experiment

贾森 (jiasen@seu.edu.cn) 东南大学

第二十届全国中高能核物理大会暨第十四届全国中高能核物理专题研会 2025年4月24-28日 上海

SuperKEKB and Belle II

Nano-beam design: Beam squeezing: ×20 smaller; Beam current: ×2 larger Target peak luminosity: KEKB×30

Belle and Belle II Datasets

- Belle (1999 2012)
- Belle II RUN-I (2019 2023)
- Belle II RUN-II (2014 2025)

Integrated luminosity of B factories

17.5

Most data at or near the $\Upsilon(4S)$ resonance, and 19.6 fb⁻¹ near $\Upsilon(10753)$.

WORLD RECORD: 5. 1×10^{34} cm⁻²s⁻¹

Exp: 7-35 - All runs

In December 2024

Belle II Online luminosity

International Belle II collaboration

Belle II now has grown to 1229 researchers from 28 countries/regions.

USTC: Univ. of Science and Technology of China(USTC)

XJTU: Xi'an Jiaotong University

ZZU: Zhengzhou University

Belle II physics

Belle II physics

The Belle II Physics Book: [PTEP 2019 (2019) 12, 123C01]

Hadronic, leptonic, and semi-leptonic B decays

Strategy for CP measurements

 $B\overline{B}$ -pair entanglement \rightarrow B-meson flavour is opposite to its pair at time of decay, then oscillates in time.

$B^0 \rightarrow \rho^+ \rho^-$

[arXiv: 2412.19624]

9

Goal: Branching fraction (\mathcal{B}), polarisation (f_L), CP asymmetry (S and C), ϕ_2 measurement

This decay gives stringent constraints of ϕ_2 due to small contribution from loop amplitude (bightarrowd).

[arXiv: 2412.19624]

 $\frac{1}{\sqrt{2}}A_{+-} + A_{00} = A_{+0}$

 $\frac{1}{\sqrt{2}}\bar{A}_{+-} + \bar{A}_{00} = \bar{A}_{-0}$

$B^0 o ho^+ ho^-$

Extend ML fit to Δt to extract S and C:

Constraining ϕ_2

- Perform isospin analysis based on the amplitude of longitudinally polarized $B \rightarrow \rho^i \rho^j$, Aij
- Constrain using this measurement + World Averages (BaBar, Belle, and LHCb)

Good agreement with previous <u>BaBar (2007)</u> and <u>Belle (2016)</u> with equivalent BaBar and \sim 50% of Belle equivalent luminosity !

Search for $B^+ o au^+ u_ au$

- [arXiv: 2502.04885]
- Precise BF value is important to check consistency with SM predictions / constrain new physics

$$\mathscr{B}(B \to \tau \nu) > \mathscr{B}(B \to \mu \nu) > \mathscr{B}(B \to e\nu)$$

- Potential modes to precisely measure |V_{ub}|
- Challenging (particularly, au mode) due to undetected neutrinos in the final state

Validate simulations/efficiency/modelling using control channels $B\to X\ell\nu,B\to D^{(*)}\pi$, and $B\to D^{*0}\ell\nu_\ell$, then

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

$$\mathcal{R}(D^{(*)+}) = \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+} \ell^- \bar{\nu}_{\ell})}$$

- In SM, the W boson couples equally to $\tau, \mu, e \Rightarrow$ Lepton-Flavor Universality (LFU)
- Ratio measuremnts provide strigent LFU tests: branching fractions, angular asymmetry, etc.
 - Normalization ($|V_{xb}|$) cancels
 - Part of theoretical, experimental uncertainties cancels

Goal: $\mathcal{R}(D^+)$ and $\mathcal{R}(D^{*+})$ measurement using semileptonic tagged approach (First results)

Reconstruction:

- Use semi-leptonic FEI to reconstruct the B_{tag}
- B_{sig} is reconstructed from $D^{(*)}$, leptons, and leptonic τ decays

Combined deviation from SM stands at 3.3σ

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

Signal extraction

- 2D binned log-likelihood fit to z_{τ} and $z_{\text{diff}} = z_{\ell} z_{\text{bkg}}$
- The three classification scores are denoted as z_{τ} , z_{ℓ} , and $z_{\rm bkg}$ for semitauonic, semileptonic, and background events, respectively.
- Input BDT variables: angular, momenta of ℓ and $D^{(*)}$, and E_{ECL} extra.

[arXiv: 2504.11220]

Results (Preliminary)

$\mathcal{R}(D^+) = 0.418 \pm 0.074 \; (\mathrm{stat}) \pm 0.051$	(syst)
$\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018$	(syst)

- Results are compatible with SM within 1.7σ

rare B decays

$B \to K \nu \bar{\nu}$

Belle II is measuring the rare decay of a B meson, created by SuperKEKB, into a K meson and two neutrinos.

The high-precision calculability of the probability of this decay makes it easy to validate the Standard Model.

- The process is known with high accuracy in the SM: $\mathcal{B}(B \rightarrow K \nu \overline{\nu}) = (5.6 \pm 0.4) \times 10^{-6}$ [PRD 107, 014511 (2023)]
- Extensions beyond SM may lead to significant rate increase.
- Very challenging experimentally, not yet observed

Two ways of tagging

 <u>New technique</u> from Belle II with inclusive ROE (Rest of Event) tagging (× 10-20 efficiency, but large backgrounds)

• Add some ML/AI (boosted decision trees or BDTs) to help suppress the large backgrounds. 16

First evidence for $B \to K \nu \bar{\nu}$

- Extract signal from maximum likelihood fit
 - Inclusive tag: in bins of q_{rec}^2 and $\eta(BDT_2)$
 - Hadronic tag: in bins of $\eta(BDT_h)$

$$\begin{split} \mathcal{B}(B \to K \nu \bar{\nu}) &= (2.7 \pm 0.5 (stat) \pm 0.5 (syst)) \times 10^{-5} \text{ (inclusive tag)} \\ \mathcal{B}(B \to K \nu \bar{\nu}) &= (1.1^{+0.9}_{-0.8} (stat)^{+0.8}_{-0.5} (syst)) \times 10^{-5} \text{ (hadronic tag)} \end{split}$$

[PRD 109, 112006 (2024)]

Combination and comparisons with other measurements:

$$\begin{split} \mathcal{B}(B \to K \nu \bar{\nu}) &= (2.3 \pm 0.7) \times 10^{-5} \\ \text{Significance: } 3.5 \sigma \end{split}$$

SM expectation.

17

Search for $B^0 o K_s^0 au^\pm \ell^\mp$

[arXiv: 2412.16470]

- Flavor changing neutral current processes are forbidden in SM at tree level.
- NP models that accommodate the b → cτℓ anomalies predict an enhancement of several orders of magnitude with τ.
- Never searched for before
- High K⁰_s purity (>98%)
- Search in 1-prong τ decays: $\tau^+ \to \ell^+ \upsilon \overline{\upsilon}, \pi^+ \upsilon, \rho^+ \upsilon$
- Fit recoil τ mass (M_{τ}) for signal extraction

$$\begin{aligned} \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}\mu^{-}) < 1.1 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}\mu^{+}) < 3.6 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}e^{-}) < 1.5 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}e^{+}) < 0.8 \times 10^{-5} \end{aligned}$$

at 90% CL

First search for $B^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$ decays

Search for $B^0 o K^{*0} au^+ au^-$

- Non-SM particles, explaining recent anomalies, would enhance BF upto $\mathcal{O}(10^3)$ due to presence of two τ s
- Main challenge: no signal peaking kinematic observable due to multiple undetected neutrinos
- Relies on missing energy information and residual calorimeter energy; Belle II is ideally suited

[arXiv: 2504.10042]

BDT is trained using missing energy, extra cluster energy in EM calorimeter, $M(K^{*0}t_{\tau}), q^2$,etc

Twice better with only half sample wrt Belle! Better tagging + more categories + BDT classifer...

The most stringent limit on the $B^0 \to K^{*0} \tau^+ \tau^-$ decay

charm

A_{CP} in $D^0 \to K^0_s K^0_s$

Charm-flavor-tag (CFT) D^0 : exploits the correlation between the flavor of a D^0 meson and the electric charges of particles reconstructed in the rest of the $e^+e^- \rightarrow c\bar{c}$ event [PRD 107, 112010 (2023)].

CFT-tag

Double the size of sample compered to D^* -tag

Fit $m(K_s^0K_s^0)$ and product of tagged flavor q and tag quality r:

[Preliminary results]

Method	Аср [%]
<i>D</i> *-tag [<u>PRD 111, 012015]</u>	$-1.4 \pm 1.3 \pm 0.1$
CFT-tag	$1.3 \pm 2.0 \pm 0.3$
Combination	$-0.6 \pm 1.1 \pm 0.1$

World's best determination!

Ξ_c^+ branching fractions

Reconstruct

- $\Xi_c^+ \rightarrow \Sigma^+ K_s^0$, $\Xi_c^+ \rightarrow \Xi^0 \pi^+$ (CF)
- $\Xi_c^+ \to \Xi^0 K^+, \Xi_c^+ \to p K_s^0, \Xi_c^+ \to \Lambda \pi^+, \Xi_c^+ \to \Sigma^0 \pi^+$ (SCS)

$e^+e^- \rightarrow \Xi_c^+$ + anything

Ξ_c^+ branching fractions

First or most precise measurements!

[Preliminary results]

[JHEP 03 (2025) 061]

quarkoium

Bottomonium

Conventional bottomonium (pure $b\overline{b}$ states) Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$) Exotic charged states (Z_b^+)

The $\Upsilon(10753)$ was first discovered in $\pi^+\pi^-\Upsilon(nS)$ final states using scan data by Belle [JHEP 10, 220 (2019)].

Recently, Belle II collected 19 fb⁻¹ of unique data around $\sqrt{s} \sim 10.75$ GeV to study the nature of the Y(10753). 25

$e^+e^- \rightarrow \omega \chi_{bJ}$ and $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega} \chi_{bJ}$ at Belle and Belle II

Ύ(10753) mass	(10756.1 <u>±</u> 4.3) MeV/c ²
Υ(10753) width	(32.2 <u>±</u> 18.7) MeV

[Preliminary results]

The mass and width are consistent with those from $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ measuremnt [JHEP 07, 116 (2024)].

$$\frac{\sigma(e^+e^- \rightarrow \chi_{bJ}(1P)\omega)}{\sigma(e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-)}$$

1.5 at \sqrt{s} \sim 10.75 GeV 0.15 at \sqrt{s} \sim 10.867 GeV

This may indicate the difference in the internal structures of $\Upsilon(10753)$ and $\Upsilon(10860)$.

• The $(\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$ excess maybe due the cascade decay of $\Upsilon(10860,11020) \rightarrow Z_b\pi \rightarrow \chi_{bJ}\rho\pi$ [PRD 90, 014036 (2014)]. 26

Evidence of $P_{c\bar{c}s}(4459)$ at Belle

[arXiv:2502.09951]

- OZI suppressed decays of $\Upsilon(1S)$ and $\Upsilon(2S)$ rich in gluons:
- enhanced baryon production
- Pentaquarks?
- Select inclusive $\Upsilon(1S, 2S) \rightarrow J/\psi\Lambda + X$ decays, then search for $P_{c\overline{c}s} \rightarrow J/\psi\Lambda$ in $M(J/\psi\Lambda)$
- 4.0 σ local significance with free mass and width
- 3.3σ significance with the Gaussian constraints from LHCb measurement [Sci. Bull. 66, 1278 (2021)]

$$-2\ln\mathcal{L}+rac{(m-m_0)^2}{\sigma_{m_0}^2}+rac{(\Gamma-\Gamma_0)^2}{\sigma_{\Gamma_0}^2}$$

Tau and dark sector

au physics

SuperKEKB as a **t factory**

• e^+e^- collider produce τ lepton pairs at high rate

>> lepton favour/number violation, CKM unitarity, CP violation, ...

Taupair events are produced back-to-back and each tau is reconstructed via 1 or 3 charged tracks.

[Preliminary results]

Search for $\tau \rightarrow \ell K_s^0$:

The most stringent constraints

Lepton-Flavour Violation in τ physics

Lepton flavour violation is only allowed by: • Neutrino oscillations $\mathcal{O}(10^{-55})$ far beyond current experimental sensitivities • New Physics models $\mathcal{O}(10^{-8})$ *e.g.* Leptoquarks for $\tau^- \to \ell^- V^\circ$ deals with $R(K^{*\circ})$ anomalies

 $\tau^-
ightarrow \Lambda(\overline{\Lambda})\pi^-$:

 $\mathcal{B}^{\text{UL}}(\tau^- \rightarrow \Lambda \pi^-(\overline{\Lambda}\pi^-)) < 4.7(4.3) \times 10^{-8}$

A dark Higgs boson in association with inelastic dark matter [Preliminary results]

Dark photon A', dark Higgs h', and two dark matter states χ_1, χ_2

- cut-and-count strategy in $M_{h'}(x^+x^-)$ distributions
- No signicant excess found
- 8 events observed consistent with expected background
- Convert UL at 90% C.L. of $\sigma(e^+e^- \rightarrow \chi_1\chi_2h') \times \mathcal{B}(\chi_2 \rightarrow \chi_1e^+e^-) \times$ $\mathcal{B}(h' \rightarrow x^+x^-)$ to mixing angle θ

Looking for simultaneous production of A' and h'

- 4 tracks in the final state
- 2 forming a pointing dispaced vertex
- mising energy

Summary

- Belle II and Belle hold a unique data sample. A number of interesting measurements have been already performed in different fields, such as
 - First evidence for $B \to K \nu \overline{\nu}$, first search for $B^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$, and most stringent UL for $B^0 \to K^{*0} \tau^+ \tau^-$
 - World's best determination for A_{CP} in $D^0 \rightarrow K^0_S K^0_S$, first or most precise measurements for some charmed baryon decays
 - Properties study of $\Upsilon(10753)$, unique in Belle II
 - τ factory! Precise property measurements and search for NP
- Only 1% of target luminosity collected so far. Stay tuned for more exciting results from Belle II.

Thanks for your attention!

Backup slides

CKM matrix element

Belle II important task:

Constrain CKM unitarity triangle & test SM

Exclusive: $B \to \pi l \nu, B \to \rho l \nu, B \to D^{(*)} l \nu, etc$ $\frac{dB}{dq^2} \propto |V_{xb}|^2 \times |FF(q^2)|^2$ Form factor from LCSR, LQCD

Inclusive:

$$B \to X_u l\nu, B \to X_c l\nu$$

$$B \propto |V_{xb}|^2 \times \left[\Gamma(b \to q l \bar{\nu}_l) + \frac{1}{m_b} + \alpha_s + \cdots \right]$$
From OPE

Several measurements carried out by Belle and Belle II:

 $|V_{cb}|$ - Angular coefficients of $B \rightarrow D^* l \nu$ Belle: PRL 133, 131801 (2024)

 $| - |V_{ub}| \text{ from } B \to (\pi, \rho) l\nu \text{ simultaneous analysis} \text{ New from Belle II} \\ - \text{ Simultaneous inclusive and exclusive } |V_{ub}| \text{ Belle: PRL 131, 211801 (2023)}$

- Belle: PRL 131, 211801 (2023)
- Ratio of inclusive $b \rightarrow c$ and $b \rightarrow u$ decays Belle: arXiv: 2311.00458

must exceed 1 GeV. The cosine of the angle between the B meson's momentum and its visible decay products in the c.m. frame is defined as

$$\cos \theta_{BY} = \frac{2E_{\rm beam}E_{\rm Y} - m_B^2 - m_{\rm Y}^2}{2\,|\vec{p}_B|\,|\vec{p}_{\rm Y}|}\,,$$

where E_{beam} is the beam energy, m_B is the *B* meson mass, and $|\vec{p}_B|$ is its momentum, computed from m_B and E_{beam} . Here $Y = D^{(*)}\ell$ represents the system of visible

Data-taking plan at Belle II

- Until 2026, about 1 ab⁻¹
 data, comparable to Belle
- Until 2029, about 4 ab⁻¹ data.