

重味奇特强子态

郭玉萍 复旦大学

On Behalf of BESIII Collaboration

• Quark Model [1964 by Gell-Mann and Zweig]

• Exotic hadrons:

C. Z. Yuan, S. L. Olsen, Nature Reviews Physics 1, 480 (2019)

Yuping Guo @ 第二十届全国中高能核物理大会

A SCHEMATIC MODEL OF BARYONS AND MESONS *

Lowest Configuration!

M.GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Glueball

Exotic Hadron Candidates

Yuping Guo @ 第二十届全国中高能核物理大会

A personal selection

Exotic Hadron Candidates

Exotic Hadron Candidates

Charmonium Spectroscopy

Beijing Electron Positron Collider II and BESIII

Yuping Guo @ 第二十届全国中高能核物理大会

Solenoid Magnet: 0.9/1.0 T

MUC $\sigma_{R\Phi}$: 2 cm

TOF

σ_T:80 ps 110 ps (60 ps)

MDC

dE/dx: 6% σ_p /p: 0.5% at 1GeV/c

EMC

 $\Delta E/E$: at 1GeV 2.5% 5.0% σ_{z} : 0.6 cm/ \sqrt{E}

Charmonium Production at BESIII

Charmonium Production at BESIII

BESIII Data Samples

BESIII Data Samples

$X(3872)[\chi_{c1}(3872)]$

- $J^{PC} = 1^{++} [2013, LHCb] PRL 110, 222001 (2013)$
- Production: *B* decays, B_s decays, Λ_b decays,

X(3872) Mass

$\chi_{c1}(3872)$ MASS FROM $J/\psi X$ MODE

VALUE (MeV) **EVTS** DOCUMENT ID **OUR AVERAGE** $\textbf{3871.64} \pm \textbf{0.06}$ $3870.2 \pm \! 0.7 \pm \! 0.3$ 24.6 ABLIKIM 20 ¹ AAIJ 19.8k $3871.64 \pm \! 0.06 \pm \! 0.01$ 20 20 20 ABLIKIM $3871.9 \pm \! 0.7 \pm \! 0.2$ $3871.95 \pm \! 0.48 \pm \! 0.12$ 0.6k AAIJ 20 ² CHOI 20 170 $3871.85 \pm 0.27 \pm 0.19$ $3873 \ ^{+1.8}_{-1.6} \pm 1.3$ ³ DEL-AMO-SANCH.. 27 20 4, 3 AALTONEN 6k $3871.61 \pm \! 0.16 \pm \! 0.19$ 20 $3871.4 \pm \! 0.6 \pm \! 0.1$ **AUBERT** 93.4 20 200 9.4 $3868.7 \pm \! 1.5 \pm \! 0.4$ AUBERT 5, 3 ABAZOV 20 $3871.8 \pm 3.1 \pm 3.0$ 522

• Mass very close to $D\bar{D}^*$ mass threshold: [(3871.69 ± 0.11) MeV]

• $E_b = -0.05 \pm 0.12 \text{ MeV} [deuteron: 2.2 \text{ MeV}]$

Yuping Guo @ 第二十届全国中高能核物理大会

• ้ง

3871.6	34 ± 0.06 M	MeV	^
	TECN	COMMENT	
23W	BES3	$e^+ \; e^- o J/\psi(1S) \pi^+ \pi^- \omega$	
20S	LHCB	$B^+ o J/\psi \pi^+ \pi^- K^+$	
14	BES3	$e^+ \; e^- ightarrow J/\psi \pi^+ \pi^- \gamma$	
1 2H	LHCB	$p \ p o J/\psi \pi^+\pi^- X$	
11	BELL	$B ightarrow K \pi^+ \pi^- J/\psi$	
10B	BABR	$B \! ightarrow \omega J \! / \psi K$	
09AU	CDF2	$p \overline{p} ightarrow J/\psi \pi^+ \pi^- X$	
Y80	BABR	$B^+ o K^+ J/\psi \pi^+ \pi^-$	
08Y	BABR	$B^0 o K^0_S \; J/\psi \pi^+\pi^-$	
04F	D0	$p \overline{p} ightarrow J/\psi \pi^+ \pi^- X$	

X(3872)-Width

 $\chi_{c1}(3872)$ WIDTH

LHCb: PRD 102, 092005 (2020)

Yuping Guo @ 第二十届全国中高能核物理大会

		^		
MENT ID		TECN	COMMENT	
	2020AD	LHCB	$p \; p o J/\psi \pi^+\pi^- X$	LHCb: PRD 102, 092005
	2020S	LHCB	$B^+ ightarrow J/\psi \pi^+\pi^- K^+$	

Flatté parameterization:

$$\frac{dR(J/\psi\pi^{+}\pi^{-})}{dE} \propto \frac{\Gamma_{\rho}(E)}{|D(E)|^{2}}$$
$$D(E) = E - E_{f} + \frac{i}{2}[g(k_{1} + k_{2}) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_{0}].$$

FWHM: $0.22^{+0.06+0.25}_{-0.08-0.17}$ MeV, depends strongly on the coupling to open-charm final state

Coupled-channel Analysis of X(3872)

- Including the $D^*\bar{D}$ self energy term; the width of D^* ; the coupled channel effect in the parameterization
- Weinberg's compositeness: Z=1 pure elemental state; Z=0 -pure bound state

	Parameters	BESIII	LHCb
-	g	$0.16 \pm 0.010^{+1.12}_{-0.11}$	$0.108 \pm 0.003^{+0.005}_{-0.006}$
	Re[EI] (MeV)	$7.04 \pm 0.15^{+0.07}_{-0.08}$	7.10
	Im[EI] (MeV)	$-0.19 \pm 0.08^{+0.14}_{-0.19}$	-0.13
	$\Gamma[\pi^+\pi^- J/\psi]/\Gamma[D^0\bar{D}^{*0}]$	$0.05 \pm 0.01^{+0.01}_{-0.02}$	0.11 ± 0.03
	FWHM (MeV)	$0.44_{-0.35-0.25}^{+0.13+0.38}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$
	Z	0.18	0.15 (0.33)

Y States[v(mass)]

- - \blacksquare Mass > 4 GeV, above $D\bar{D}$ threshold
 - Solution Served in inclusive hadron cross section
 - Not observed in open charm pair cross section

Y States[ψ (mass)]

- - Confirmed by CLEO and Belle
 - \blacksquare Mass > 4 GeV, above $D\bar{D}$ threshold
 - Solution Served in inclusive hadron cross section
 - Not observed in open charm pair cross section

Y States[y(mass)]

Overview of CS measurements at BESIII

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

Overview of CS measurements at BESIII

Yuping Guo @ 第二十届全国中高能核物理大会

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

Overview of CS measurements at BESIII

• Precise cross section measurements of open charm, hidden charm, and light hadron processes

$Y(4260) \Rightarrow Y(4230) + Y(43xx)$

20

Y(4230) in Open Charm Process

				\downarrow					
$\Gamma_{ee}B(\mathrm{eV})$	$\pi^+\pi^- J/\psi$	$\pi^+\pi^-h_c$	$\omega\chi_{c0}$	$\pi^+\pi^-\psi(2S)$	ηJ/ψ	K^+K^-J/ψ	$\pi^0 Z_c(3900)^0$	$\pi^{\pm}(D\bar{D}^*)^{\mp}$	$\pi^{\pm}(D^*\bar{D}^*)^{\mp}$
Min	1.7[0.2]	4.6[2.9]	2 5[0 2]	0.02[0.01]	4.0[0.5]	0.29[0.10]	0.22[0.25]	8.6[1.6]	4.8[0.9]
Max	14.6[1.2]		2.5[0.2]	1.64[0.83]	11.9[1.1]	0.42[0.15]	0.53[0.15]	77.4[10.1]	22.4[9.0]

Yuping Guo @ 第二十届全国中高能核物理大会

Mass and width from different process

determined with BW parameterization consider possible interference

Y(4230) in Open Charm Process

- Y(4260) has fine structures
- Mass around 4220 MeV, width around 50 MeV; varies in different modes \Rightarrow need more sophisticated model
- It has decay modes, hidden charm and open charm final states: $\omega \chi_{c0}$, $\pi \pi J/\psi$, $\pi \pi h_{c'}$ $\pi\pi\psi(2S), \pi\pi\pi\eta_{c}, K\bar{K}J/\psi, \eta J/\psi, \pi^{+}D^{0}D^{*-},$ $\pi^+ D^{*0} \bar{D}^{*-}, \gamma X(3872), \eta h_c, \pi Z_c(3900)$

							V		
$\Gamma_{ee}B(eV)$	$\pi^+\pi^- J/\psi$	$\pi^+\pi^-h_c$	$\omega\chi_{c0}$	$\pi^+\pi^-\psi(2S)$	$\eta J/\psi$	K^+K^-J/ψ	$\pi^0 Z_c(3900)^0$	$\pi^{\pm}(D\bar{D}^*)^{\mp}$	$\pi^{\pm}(D^*\bar{D}^*)^{\mp}$
Min	1.7[0.2]	4.6[2.9]	2.5[0.2]	0.02[0.01]	4.0[0.5]	0.29[0.10]	0.22[0.25]	8.6[1.6]	4.8[0.9]
Max	14.6[1.2]			1.64[0.83]	11.9[1.1]	0.42[0.15]	0.53[0.15]	77.4[10.1]	22.4[9.0]

Yuping Guo @ 第二十届全国中高能核物理大会

Mass and width from different process

determined with BW parameterization consider possible interference

Observation of Y(4500)

- $M = 4484.7 \pm 13.3 \pm 24.1 \text{ MeV}/c^2$ $\Gamma = 111.1 \pm 30.1 \pm 15.2 \text{ MeV}$
- A 5S-4D mixing state (J. Z. Wang et al. PRD99, 114003 (2019) [Width 2σ larger]
- A heavy-antiheavy hadronic molecule (X. K. Dong et al. Prog. Phys. 41, 65 (2021))

BW2: $M = 4469.1 \pm 26.2 \pm 3.6 \text{ MeV}/c^2$, $\Gamma = 246.3 \pm 36.7 \pm 9.4 \text{ MeV}$

- A $cs\bar{c}\bar{s}$ state from LQCD (T. W. Chiu et al. PRD73, 094510) (2006))
- Solution \cong Assuming structures in KKJ/ψ and $\pi D^*\bar{D}^*$ are the same, $B[Y \rightarrow \pi D^* \overline{D}^*]/B[Y \rightarrow K \overline{K} J/\psi] \sim 10^2$, inconsistent with hidden-strangeness tetraquark nature (F. Z. Peng et al. PRD107, 016001 (2023))

New Decay Modes of Y(4660)

Yuping Guo @ 第二十届全国中高能核物理大会

Mass: $4647.9 \pm 8.6 \pm 0.8$ MeV

Width: $33.1 \pm 18.6 \pm 4.1$ MeV

Second hadronic transition decay mode since its discovery

Y(4660) in $D_s D_{s1}(2536)$ and $D_s D_{s2}^*(2573)$

• 15 data samples corresponding to a total integrated lum. of 6.6 fb⁻¹ from \sqrt{s} =4.53 to 4.95 GeV

- The $e^+e^- \rightarrow \pi^+\pi^-h_c$ process was observed by CLEO at $\sqrt{s}=4.17$ GeV [10 σ] PRL107, 041803 (2011) • The cross section of $e^+e^- \rightarrow \pi^+\pi^-h_c$ was measured by BESIII at \sqrt{s} from 3.9 to 4.6 GeV, two resonant structures was observed PRL118, 092002 (2017)
- New data (27 data samples) between \sqrt{s} =4.18 to 4.95 GeV has been collected by BESIII

Precise Measurement of $\sigma[e^+e^- \rightarrow \pi^+\pi^-h_c]$

Yuping Guo @ 第二十届全国中高能核物理大会

Test of resonance structures:

- Starting with two coherent BWs, add one more BW, two
 - more BWs, one more BW and a continuum termt
- Check significance of each additional term
 - Baseline model: $\sigma^{\text{dressed}} = |BW_1 + BW_2e^{i\phi_2} + BW_3e^{i\phi_3}|^2$
- Significance of the third resonance: 5.4σ
- Significance of additional contribution smaller than 1σ

Precise Measurement of $\sigma[e^+e^- \rightarrow \pi^+\pi^-h_c]$

Precise Measurement of $\sigma[e^+e^- \rightarrow \pi^+\pi^-h_c]$

- mode PRD99, 114003 (2019)

Yuping Guo @ 第二十届全国中高能核物理大会

• No obvious resonance structure is found at around $\psi(4660)$, in tension with tetraquark explanation EPJC 78, 29 (2018)

• In S - D mixing scheme, 4S - 3D, 5S - 4D states are located in this mass region, only three are observed in this

a(Ca)/b

 $\alpha(C \alpha)/\lambda$

Sophisticated Models Needed

Sophisticated Models Needed

Sophisticated Models Needed

N. Husken, et al., arXiv:2404.03896

FIG. 2. Fit result for Model 1. Left: $e^+e^- \rightarrow D^0\bar{D}^0$. Right: $e^+e^- \rightarrow D^+D^-$. Open data points are the Born cross section values based on observed cross sections, as reported in Ref. [18]; closed data points are from Ref. [1].

FIG. 3. Fit result for Model 1. Left: $e^+e^- \rightarrow D^*\bar{D}$. Right: $e^+e^- \rightarrow D^*\bar{D}^*$. The red region indicates the 68% confidence level, while green is the 90% confidence level. Black data points are from BESIII [21], red data is from CLEO-c [23] [24], blue data is from Belle [22].

FIG. 1. Energy dependence of the cross sections for the production of neutral particles. Experimental data are taken from Refs. [32, 34-36, 39]

S. X. Nakamura, et al., arXiv:2312.17658

Yuping Guo @ 第二十届全国中高能核物理大会

S. G. Salnikov & A. I. Milstein, arXiv:2404.06160

(a) $D^{\dagger}D^{-}$

FIG. 2. Energy dependence of the cross sections for production of charged particles. Experimental data are taken from Refs. [32-39].

(b) D^{*+}

(c) D*+D

Four-Quark Matter: Z

PRL111, 242001 (2013) PRL112, 132001 (2014)

Pentaquark State

Yuping Guo @ 第二十届全国中高能核物理大会

Borrowed from Liupan An @ 第十届XYZ研讨会

Summary

- A lot of progress has been made in the experimental study of hadron spectroscopy and exotic hadrons
- Many candidates with exotic characteristics have been observed:
 - \mathbb{Z}_Q : tetraquark with a $Q\bar{Q}$; P_Q : pentaquark with a $Q\bar{Q}$; Y: vector states with $J^{PC} = 1^{--}$; X: others
 - Some are close to the threshold => are good candidates for molecules, and full spectroscopy should be investigated
 - "Overpopulation problem" in vector states
 - Abnormal production/decay properties
- More results are expected in the near future with larger statistics, opportunities and challenges
 - BESIII [just finished upgrade, 3x luminosity optimized at 4.7 GeV]
 - Belle II [1% of target luminosity collected so far]
 - See Section Sectio

Summary

- A lot of progress has been made in the experimental study of hadron spectroscopy and exotic hadrons
- Many candidates with exotic characteristics have been observed:
 - \mathbb{Z}_Q : tetraquark with a $Q\bar{Q}$; P_Q : pentaquark with a $Q\bar{Q}$; Y: vector states with $J^{PC} = 1^{--}$; X: others
 - Some are close to the threshold => are good candidates for molecules, and full spectroscopy should be investigated
 - "Overpopulation problem" in vector states
 - Abnormal production/decay properties
- More results are expected in the near future with larger statistics, opportunities and challenges

 - Belle II [1% of target luminosity collected so far]
 - See Section Sectio

