

无中微子双贝塔衰变的探索

陈昊 复旦大学现代物理研究所

第二十届全国中高能核物理大会暨 第十四届全国中高能核物理专题研讨会 上海,2025年4月28日

问题1: 正反物质的不对称性

问题2: 中微子的反粒子是其本身吗?

区分v与 ⊽:

● 衰变伴生的带电轻子种类

在假想的静止参考系中,区分ν与 ⊽ 需要一个专为这一目 的而设置的量子数,如轻子数─<mark>也许</mark>不够自然

中微子做为马约拉纳费米子也许更自然

REVIEWS OF MODERN PHYSICS, VOLUME 95, APRIL–JUNE 2023

非常明确的实验观测目标 + 丰富而重要的物理意义

- **1935**: Goeppert-Mayer提出2νββ,并预测其半衰 期 >10¹⁷年
- 1937:Majorana提出Majorana费米子假设,并指出中微子可能是Majorana费米子
- **1939:** Furry提出0vββ, 当时计算出的半衰期可 低至10¹⁵年
- 49s-50s: 诸多探测实验进行了探测, 在未发现-发现-未发现中徘徊
- **1957:** Case, Touschek and Radicati结合V-A理论 指出零质量中微子→no 0vββ
- 2016: 中微子振荡→中微子质量不为零

REVIEWS OF MODERN PHYSICS, VOLUME 95, APRIL–JUNE 2023

有关0νββ的主要论文的引用次数变化

0νββ探测实验的核素选择

在light-neutrino exchange model中, 0vββ的半衰期与phase space factor和nuclear matrix element有关

全国中高能核物理大会@上海

0νββ探测实验发展的方向

探测实验的灵敏度可以表示为

$T_{1/2}^{0\nu}$ sensitivity $\propto a \epsilon M t$ 无本底	a = 目标核素质量占比	同位素富集
	$\epsilon = 探测效率$	0νββ源=探测器
	M = 总质量	Scale-up
$T_{1/2}^{0\nu}$ sensitivity $\propto a\epsilon \sqrt{\frac{Mt}{B\Delta E}}$ 有本底	t = 实验有效运行时间	探测器稳定性
	B = 本底指数 @ Q值	降本底—深地
	ΔE=能量分辨率@Q值	提高能量分辨率

0vββ半衰期
 至少>10²²年,
 必须在深地
 实验室进行

全国中高能核物理大会@上海

韩柯,COUSP2024

高纯锗探测器—⁷⁶Ge

⁷⁶Ge—GERDA和MAJORANA DEMONSTRATOR

MJD: 美国SURF, 20 kg富集Ge-76的锗晶体

Point-like p+电极:更好的能量分辨率 1.1 keV @ Q值 underground-electroformed copper

⁷⁶Ge—LEGEND

LEGEND-200

MJD

- **200 kg** of ^{enr}Ge (×5 yr), in GERDA cryostat
- Taking physics data since March 2023 with 142 kg
- $B \sim 2 \cdot 10^{-4}$ cts / (keV kg yr) $\mapsto T_{1/2}^{0v} > 10^{27}$ yr

LEGEND-1000 arxiv 2107.11462 "pre-Conceptual Design Report

- Design Report ,
- **1 ton** of ^{enr}Ge (×10 yr), pending funding approval
- $B < 10^{-5}$ cts / (keV kg yr) $\mapsto T_{1/2}^{0v} > 10^{28}$ yr
- Fully cover m_{etaeta} inverted ordering region

全国中高能核物理大会@上海

⁷⁶Ge—LEGEND strategy

LEGEND的本底甄别技术

 $BI = 5.3 \pm 2.2 \cdot 10^{-4} \text{ cts } / (\text{keV kg yr}) \qquad \text{From: Neutrino2025 conference}$ FRELIMINARY!

⁷⁶Ge—CDEX: 暗物质与0vββ

全国中高能核物理大会@上海

⁷⁶Ge—CDEX300v

- 225 kg富集的⁷⁶Ge
- 液氮既为冷却剂,也是被动 屏蔽

Key parameters: 0.5~1 ton-yr exposure 1E-4 cpkky BG in ROI

<m_{ββ}>: 30-70 meV

 $T_{1/2} > 10^{27} \text{ yr}$

● LAr+SiPM进行主动屏蔽

Physics goal:

低温晶体量热器实验CUORE—运行中

优势:~10 mK → 高能量分辨率~0.3% (FWHM) 衰变源=探测器→ 探测效率高(>85%):

复旦大学,上海硅酸盐所,上海交大是CUORE 合作组成员

目前结果: 没有发现 $0\nu\beta\beta$, $T_{1/2} > 2.8 \times 10^{25}$ yr, $m_{\beta\beta} < 90-305$ meV, Best limit on ¹³⁰Te, *Nature 604,53 (2022)*

CUPID: 更低本底—¹⁰⁰Mo

¹⁰⁰Mo高Q_{$\beta\beta$}(~3.034 MeV)

避开自然界中大多Gamma本底

富集¹⁰⁰Mo在技术和经济性上可以接受

CUPID: 更低本底—光热双信号读出

ROI内排除>99.9% 的α本底 (超过CUORE灵敏度,实现CUPID目标)

CUPID合作组

International Collaboration CUPID – Italy CUPID – US CUPID – France CUPID – China ~ 30 institutes, >150 collaborators

CUPID-China

- Beijing Normal University*
- Fudan University*
- o Ningbo University
- Shanghai Jiao Tong University*
- Shanghai Institute of Applied Physics
- Shanghai Institute of Ceramics
- Tsinghua University
- University of Science and Technology of China*

(* Officially in the international CUPID collaboration)

~ 8 institutes, > 40 collaborators

全国中高能核物理大会@上海

CUPID-CJPL发展路线

全国中高能核物理大会@上海

陈昊 复旦大学

Enriched Xenon Observatory (EXO)

位于美国的WIPP:只有655米深,但周 围的<mark>盐提供了额外的屏蔽</mark> 161千克的富集¹³⁶Xe (81%) – 75 千克有效质量 能量分辨率: 28 keV @ Q值=2458 keV. 给出 limit: T_{1/2} > 2.8 × 10²⁵ yr

$EXO \rightarrow nEXO$

荧光读出用SiPMs取代APDs

预期灵敏度: T_{1/2} = 7.4 × 10²⁷ yr

陈昊 复旦大学

 Imax-41 组出了自然电关验最少或时午表纳限时

 (Run0+Run1):
 $T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24}$ yr (90% CL)

 未来质量更大的PandaX-20T将会给出更好的结果

气体TPC--NEXT

全国中高能核物理大会@上海

陈昊 复旦大学

NEXT—background substraction

NEXT时间规划

全国中高能核物理大会@上海

陈昊 复旦大学

PandaX-III

全国中高能核物理大会@上海

非xenon的TPC-- NvDEx

陈昊 复旦大学 KamLAND-Zen 2022

掺杂液体闪烁体—KamLAND-Zen

SNO+

* Numbers are quoted from results shown in Neutrino2022 Conf. and the North America – Europe workshop on future $0\nu\beta\beta$ experiments in 2021.

20 kton液闪 →100 ton ¹³⁰Te或 者¹³⁶Xe

- Nd-150的Q值高(3.37 MeV)
- 实现双贝塔核素的多核素测量,对核矩阵元进行约束
- 未来有望利用切伦科夫光闪烁光分离技术,实现双 电子鉴别,大幅降低单电子本底
- 在1%天然Nd的掺杂比例、能量分辨3%@1 MeV、 Nd-150曝光量为1.46 ton-year下, Nd-150的半衰期下 限估计为

Nd-150: 6.45×10²⁵ yr(90% C.L.)

下一代 0νββ 实验目标

$$m_{\beta\beta} = \bigg| \sum_{i=1}^{3} |U_{\mathrm{ei}}^2| e^{i\varphi_{\mathrm{i}}} m_{\mathrm{i}}$$

全国中高能核物理大会@上海

陈昊 复旦大学

全国中高能核物理大会@上海

部分国内0νββ实验

全国中高能核物理大会@上海

陈昊 复旦大学

- 无中微子双贝塔衰变有重要的物理意义,实验的发展在曲折中前进。
- 无中微子双贝塔衰变的探测现状是多种核素,多种探测技术并进,拥有 非常多元化的实验方法。
- 目前实验的发展已经到了一个节点,机遇与挑战并存,希望在未来十年 能有所突破。

