

Heavy quark probes of the QCD matter: a theoretical perspective

Min He (何敏)

Nanjing Univ. of Sci. & Tech., Nanjing, China

第二十届全国中高能核物理大会上海 Apr.28,2025

Heavy quarks & heavy hadrons

- Heavy quark $m_c \sim 1.5$, $m_b \sim 4.5$ GeV >> Λ_{QCD}
 - \Rightarrow produced in early hard process $\tau \sim 1/2m_Q$

Hadronization → charmonium vs open charm hadrons

Heavy flavor transport as probes of QGP

- m_Q>>T → number conserved through diffusion/hadronization: tagged & traceable probes
- $\tau_Q^{eq} \ge \tau_{QGP}$ \Rightarrow carrying a memory of interaction history: quantitative gauge of coupling strength

Outline of the presentation

Part I: Open heavy-hadron production in pp

- Heavy flavor hadro-chemistry: non-universal
- Statistical hadronization: grand-canonical \rightarrow canonical

Part II: Open heavy-flavor transport in Pb-Pb

- Interaction of HF with medium: T-matrix approach
- Diffusion & hadronization
- Collective flow & p_T -dependent modifications of hadro-chemistry

Part III: Heavy quarkonium transport in Pb-Pb

- Semi-classical transport of heavy quarkonia in QGP
- LO vs NLO reaction rate
- $J/\psi \& \psi(2S)$ collective flow

Disclaimer: selection of topics constrained by my knowledge focused on low & intermediate p_T , no high p_T HF jets

Outline of Part I

Part I: Open heavy-hadron production in pp

- Heavy flavor hadro-chemistry: non-universal
- Statistical hadronization: grand-canonical \rightarrow canonical
- Providing baseline heavy-hadron p_T -spectra for Pb-Pb

Heavy quark hadronization in pp collisions

Statistical Hadronization Model (SHM)

- High-energy pp collisions = light-quark-rich environment
 - → stochastic/statistical coalescence of c/b with surrounding q
- Statistical hadronization model for heavy-hadrons

Hadronic population born into equilibrium = maximum entropy → 'thermal' production Khazeev & Satz, EPJC 52,187 (2007)

Relative chemical equilibrium \rightarrow primary production yields N_i \propto thermal densities n_i

• Grand-canonical ensemble for mini.bias pp

$$n_{i}^{\text{primary}} = \frac{d_{i}}{2\pi^{2}} \gamma_{s}^{N_{s}^{i}} m_{i}^{2} T_{H} K_{2} \left(\frac{m_{i}}{T_{H}}\right) \begin{cases} \gamma_{s} = 0.6 - \text{strangeness suppression factor} \\ T_{H} = 170 \text{ MeV} - \text{`universal' hadronization temperature} \end{cases}$$

Heavy-hadron mass spectra as input of SHM

Ground-state heavy-hadron total density = primary + feed-downs

M.He@NUST

第二十届全国中高能核物理大会上海 Apr.28,2025

Heavy baryon-to-meson ratio: mini.bias pp

第二十届全国中高能核物理大会上海 Apr.28,2025

Canonical ensemble (CE) SHM

Canonical ensemble partition function: strict conservation of quantum charges

$$Z(\vec{Q}) = \int_{0}^{2\pi} \frac{d^{5}\phi}{(2\pi)^{5}} e^{i\vec{Q}\cdot\vec{\phi}} \exp[\sum_{j} \gamma_{s}^{N_{sj}} \gamma_{c}^{N_{cj}} \gamma_{b}^{N_{bj}} e^{-i\vec{q}_{j}\cdot\vec{\phi}} z_{j}] \qquad \vec{Q} = (Q, N, S, C, B)$$
$$z_{j} = (2J_{j} + 1) \frac{V\Gamma_{H}}{2\pi^{2}} m_{j}^{2} K_{2}(\frac{m_{j}}{T_{H}}).$$

• Primary hadron yield: CE vs GCE

correlation volume ~ system size

$$\begin{split} \langle N_{j} \rangle^{CE} &= \gamma_{s}^{N_{sj}} \gamma_{c}^{N_{cj}} \gamma_{b}^{N_{bj}} z_{j} \frac{Z(\vec{Q} - \vec{q}_{j})}{Z(\vec{Q})} \\ &= \langle N_{j} \rangle^{GCE} \underbrace{Z(\vec{Q} - \vec{q}_{j})}{Z(\vec{Q})} \\ \end{split}$$
 chemical factor <1: canonical suppression for charged hadron with $\vec{q}_{j} \neq 0$

E.g. exact baryon-number conservation requires: simultaneous creation of a pair of baryon and antibaryon → energy-expensive exp(-2m_N/T_H)
 → canonical suppression for baryon production

Ground-state b-hadron production ratios

- Λ_b^0/B GCE saturation limit $\rightarrow e^+e^-$ vacuum fragmentation limit

- RQM strongly favored by data

Take-aways from Part I

- Heavy flavor hadro-chemistry: non-universal
 - c/b $\rightarrow \Lambda_{c/b}$ enhanced & c/b \rightarrow D/B reduced in pp vs e⁺e⁻

- Grand-canonical \rightarrow canonical statistical hadronization
 - exact conservation of quantum charges \rightarrow canonical suppr.
 - large volume saturation limit \rightarrow vacuum fragmentation e⁺e⁻ limit

Outline of Part II

Hadro-chemistry & p_T spectra computed above in minimum bias pp collisions = a controlled reference for studying modifications in heavy-ion collisions \rightarrow

Part II: Open heavy-flavor transport in Pb-Pb

- Interaction of HF with medium: T-matrix approach
- Heavy quark diffusion & hadronization in QGP
- Collective flow & p_T -dependent modifications of hadro-chemistry

Heavy flavor transport as probes of QGP

- m_Q>>T → number conserved through diffusion/hadronization: tagged & traceable probes
- $\tau_Q^{eq} \ge \tau_{QGP}$ \Rightarrow carrying a memory of interaction history: quantitative gauge of coupling strength

HQ interaction & diffusion in QGP

Heavy quark Brownian motion: Fokker-Planck/Langevin equation

• Q-q/g soft scatterings: T-matrix resummation of lattice-constrained in-medium HQ potential

1-body HQ propagator $Q - \Sigma_0 - = T$

$$D = 1 / [\omega - \omega_k - \Sigma(\omega, k)]$$

Review: MH, van Hees & Rapp, PPNP 130 (2023) 104020

Charm quark thermal relaxation rate in QGP

 $\gamma = A \sim \int |T_{Qj}|^2 (1 - \cos\theta) f^j$

- Non-perturbative enhancement at low p & T; approaching pQCD at high p & T
- x K-factor=1.6 for mimicking spin-dependent force/radiative contributions

HQ hadronization: resonance recombination

• 2→1 Resonance Recombination Model (RRM) via Boltzmann equation

 $f_M(\vec{x}, \vec{p}) = \frac{\gamma_M(p)}{\Gamma_M} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} f_q(\vec{x}, \vec{p_1}) f_{\bar{q}}(\vec{x}, \vec{p_2}) \sigma_M(s) v_{\rm rel}(\vec{p_1}, \vec{p_2}) \delta^3(\vec{p} - \vec{p_1} - \vec{p_2})$

- Resonant cross section $\sigma_M(s) \leftarrow$ T-matrix resonance amplitude

Space-Momentum Correlations

- Encoding energy conservation & correct equilibrium limit
- 3→1 RRM: diquark correlations in heavy-baryons

$$f_B(\vec{x}, \vec{p}) = \frac{E_B(\vec{p})}{\Gamma_B m_B} \int \frac{d^3 p_1 d^3 p_2 d^3 p_3}{(2\pi)^6} \frac{E_d(\vec{p}_{12})}{\Gamma_d m_d} f_1(\vec{x}, \vec{p}_1) f_2(\vec{x}, \vec{p}_2) f_3(\vec{x}, \vec{p}_3)$$

M.He@NUST

 $\times \sigma_{12}(s_{12}) v_{\rm rel}^{12}(\vec{p}_1, \vec{p}_2) \sigma_B(s_{d3}) v_{\rm rel}^{d3}(\vec{p}_{12}, \vec{p}_3)|_{\vec{p}_{12} = \vec{p}_1 + \vec{p}_2} \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3)$

10

D-meson & Λ_c -baryon's flow @ 5 TeV Pb-Pb

ALICE, JHEP 01 (2022) 174

- Brown curve taken from our model calculation in PRL 124, 042301 (2020)
- Simultaneous description of D's $R_{AA}\,\&\,v_2$

ALICE highlights @ Quark Matter 2025

- In particular, Λ_c 's v₂ curve taken from our predictions in PRL 124, 042301 (2020)
- v_2 at low p_T : gauge of coupling strength

Charm hadro-chemistry Λ_c/D : pp \rightarrow Pb-Pb

purple curves taken from our model predictions in PRL 124, 042301 (2020) & PLB 795, 117 (2019)

- Same RQM charm-hadron spectra (in particular baryons) in Pb-Pb & pp

- RRM satisfying correct relative chemical equilibrium limit \rightarrow same integrated Λ_c/D as in pp
- RRM with SMCs capaturing full flow effects \rightarrow enhancement of Λ_c/D at intermediate p_T

Bottom-hadron nuclear modification factors

MH & Rapp, PRL 131, 012301 (2023)

Enhanced strangeness coupled to b-quark via RRM → larger R_{AA} for non-prompt D_s

Zhao & MH, PLB 861, 139283 (2025)

 Statistical recombination of b-quark with plenty of near-thermalized c-quarks → x5-6 enhancement of B_c at low p_T

Take-aways from Part II

- c/b transport coefficient Heavy quark diffusion D-meson, HRG LO pQCD, α=0.4 - spatial diffusion coefficient: $\mathcal{D}_{s}=T/m_{0}\gamma \rightarrow \langle x^{2} \rangle \mathcal{D}_{s}t$ 30 T-matrix from U-pot.*K(=1.6) model & lattice $\mathcal{D}_{s}(2\pi T) \sim 1-3$ near T_{c} , x10 smaller than pQCD 25 c-quark, used in He&Rapp '20 b-quark, used in He&Rapp '23 (2πT) ₅₀ lattice QCD - collisional width $\Gamma_{coll} \sim 3/\mathcal{D}_s \sim 1 \text{ GeV} > M_{q,q} \rightarrow \text{thermal partons}$ quenched **വ്** 15 2+1-flavor, HotQCD PRL '23 melted, while HQs as Brownian markers survive 10 5 - maximum coupling strength near $T_c \rightarrow strongly$ coupled 0.8 **QGP** liquid 0.6 1.0 1.2 1.6 1.8 2.0 T/T
- Heavy-quark hadronization
 - recombination on top of diffusion \rightarrow characteristic flow features (c vs b, meson vs baryon)
 - recombination $\rightarrow p_T$ -dependent modifications of hadro-chemistry, but only kinematic redistribution in p_T with integrated Λ_c/D unchanged

•

Outline of Part III

Part III: Heavy quarkonium transport in Pb-Pb

- Semi-classical transport of heavy quarkonia in QGP
- Reaction rate: LO vs NLO
- $J/\psi \& \psi(2S)$ collective flow

Semi-classical transport of charmonium in QGP

Review: MH, van Hees & Rapp, PPNP 130 (2023) 104020

- Transport coefficients
 - equilibrium limit $N_{\psi}^{eq}(\mathbf{T}) = \gamma_c^2 n_{\psi}(\mathbf{T}) \mathbf{V}_{FB}$, with $\gamma_c \propto \sigma_{ccbar}$
 - dissociation/reaction rate Γ_{ψ} [E_B(T)]:

LO: gluo-dissociation $g+\psi \rightarrow c+cbar$

NLO: parton-inelastic $g/q+\psi \rightarrow g/q+c+cbar$

Dissociation

第二十届全国中高能核物理大会上海 Apr.28,2025

Regeneration

J/w

D

J/w

Charmonium dissociation rate in QGP

Heavy quarkonium-gluon coupling: pNRQCD color-electric dipole

Chen & MH, PLB 786 (2018) 260-267; Zhao & MH, PRD 110, 074040 (2024)

第二十届全国中高能核物理大会上海 Apr.28,2025

Resolving the 'J/ ψ v₂ puzzle'

RRM for J/ψ p_T-shape: normalized to N^{regeneration}

$$f_{\Psi}(\vec{x},\vec{p}) = C_{\Psi} \frac{E_{\Psi}(\vec{p})}{m_{\Psi} \Gamma_{\Psi}} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} (f_c(\vec{x},\vec{p_1}) f_{\bar{c}}(\vec{x},\vec{p_2})) \times \sigma_{\Psi}(s) v_{\rm rel}(\vec{p_1},\vec{p_2}) \delta^3(\vec{p}-\vec{p_1}-\vec{p_2})$$

Off-equilibrium Langevin c/cbar distributions constrained by D-meson observables

- Intermediate p_T : harder off-equi. c/cbar spectra + SMCs $\rightarrow p_T$ reach of regeneration much extended

Sequential regeneration: v_2 of $\psi(2S)$

• Binding energy J/ $\psi > \psi(2S) \rightarrow$ dissociation temperature T_d J/ $\psi > \psi(2S)$ \rightarrow regeneration of $\psi(2S)$ at T_d ~ T_c in hadronic phase, significantly later than J/ ψ

$$f_{\psi'}(\vec{x},\vec{p}) = C_{\psi'} \frac{\gamma_{p,\psi'}}{\Gamma_{\psi'}} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} f_D(\vec{x},\vec{p_1}) f_{\bar{D}}(\vec{x},\vec{p_2}) \sigma_{\psi'}(s) v_{\rm rel}(\vec{p_1},\vec{p_2}) \delta^3(\vec{p}-\vec{p_1}-\vec{p_2})$$

- Regeneration c + cbar $\rightarrow J/\psi$ but D + Dbar $\rightarrow \psi(2S)$

M.He@NUST

- $\psi(2S) v_2 \sim 17\%$ vs. J/ $\psi \sim 11\%$, a strong indication of sequential regene. if confirmed

Take-aways from Part III

- Heavy quarkonia melt through large reaction rates (\leftrightarrow small HQ \mathcal{D}_s), rather than static screening of color force
 - lattice QCD: strong HQ potential ReV with little screening near T_c, but large ImV ~ Γ_{diss}
 - probe of in-medium force via in-medium "spectroscopy", not "thermometer" via static screening

- Quantitative connections between open- \leftrightarrow hidden-charm transport
 - transported c/cbar distributions & d\sigma^{cc}\!/dy via regeneration

Summary & outlook

1.He@NUST

- HFs: excellent probes of sQGP transport properties, hadronization mechanisms, in-medium force & and inner structure/working
 - a small open HF diffusion coefficient \mathcal{D}_{s}
 - recombination/color neutralization important
 - quarkonia melting by large reaction rates
 - close connection between open- & hidden-HF/

strongly coupled QGP likely supported by significant remnant confining force well above T_c

- Outlook: LHC Run 3/4, sPHENIX, SHINE/NA61, ALICE3 ...
 - pp: Ξ_c production puzzle, rapidity dependence of Λ_c/D ?
 - p-dependence of \mathcal{D}_s : nonperturabtive diffusion \rightarrow perturbative radiative e-loss
 - quantum effects in open & hidden HF transport

28

Back-up: $\Sigma_c/D \& \psi(2S)/J/\psi$ in pp collisions

Ground-state b-hadron densities/ratios

• total density & production fractions of ground state b-hadrons @ T_{H} =170 MeV

Fragmentation & p_T-spectra

FONLL b-quark p_t-spectrum + fragmentation into all primary states + decay simulations • \rightarrow ground-state b-hadrons p_T-spectra: z= p_T/p_t

 $D_{b \to H_b}(z) \propto z^{\alpha}(1-z), \begin{cases} \text{weight} \propto \text{primary density} (relative chemical equilibrium)} \\ \alpha_{\text{B}} = 45, \ \alpha_{\text{Bs}} = 25, \ \alpha_{\text{baryon}} = 8 \text{ to tune the slope of spectra} \end{cases}$

Fitting meson spectra \rightarrow predicting baryon & total d $\sigma^{bbar}/dy=39.3 \ \mu b$ for 5.02 TeV mid-y based on SHM chemistry -> baseline for b-hadron production in Pb-Pb collisions

Ground-state b-hadron ratios vs Volume

• As volume/system size reduces, B_s/B , Λ_b/B suppressed by a factor 2; Ξ_b/B suppression stronger, two-fold role of baryon + strangeness

M.He@NUST

• All ratios tend to the corresponding GCE-SHM values at large system size

$\Lambda_c/D \& \Lambda_c R_{AA}$, ALICE PLB 839 (2023) 137796

第二十届全国中高能核物理大会 上海 Apr.28,2025

HF elliptic flows, ALICE highlights @ QM2025

第二十届全国中高能核物理大会上海 Apr.28,2025

Recombination: space-momentum correlations

Inhomogeneous distribution: SMCs → recombination beyond momentum space

• Left-over b-quarks: fragmentation in the same manner as in pp

- Excited state more massive: recombination spectrum harder than ground state (SMCs/flow)
- RRM vs frag. crossing at $p_T \sim 14$ GeV for $\Lambda_b 1$ vs $\Lambda_b 6$ at $p_T > 25$ GeV

Modifications of bottom hadro-chemistry

• $pp \rightarrow PbPb$

- \square B_s/B enhancement at low p_T: b coupled to equilibrated strangeness via recombination
- $\Box \Lambda_b/B$ flow-bump at intermediate p_T~5-15 GeV [significantly higher than c-sector]: stronger flow push on baryons, captured by 3-body RRM with SMCs
- □ Ξ_b/B enhancement more pronounced: combining two-fold role of containing a s-quark & being a 3-body baryon

b-hadron nuclear modification factors

• R_{AA}: hierarchy of flow effects and suppression driven by their quark content

- B_s: b-quark coupled to equilibrated strangeness via recombination
 Λ_b: 3-body baryon recombination, RRM with SMCs
 Ξ_b: combining two-fold role of being baryon + containing a s-quark
- Non-prompt D⁰ & Ds: weak decays of all b-hadrons via PYTHIA8
 第二十届全国中高能核物理大会 上海 Apr.28,2025

Transport coefficient $\mathcal{D}_{s}(2\pi T)$

• HQ spatial diffusion coefficient: $\mathcal{D}_s = T/m_Q A(p=0) = T/m_Q \gamma \rightarrow \langle x^2 \rangle \sim \mathcal{D}_s t$

- models & lattice $\mathcal{D}_{s}(2\pi T) \sim 1-3$ near T_{c} , x10 smaller than pQCD \rightarrow collisional rate $\Gamma_{coll} \sim 3/\mathcal{D}_{s} \sim 1$ GeV > $M_{q,g} \rightarrow$ thermal partons melted, Brownian markers/HQs survive
- maximum coupling strength near $T_c \rightarrow small D_s \& \eta/s \rightarrow strongly coupled QGP$

۲