

Jet Physics in Heavy-Ion Collisions

- 曹杉杉
- 山东大学
- 2025年4月28日 上海 第二十届全国中高能核物理大会

Probing quark-gluon plasma (QGP) using jets

- Quantify QGP effects on jets by comparing jet spectra between pp and AA collisions
- Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{dN^{\rm AA}/dp_{\rm T}}{\langle N_{\rm coll}^{\rm AA} \rangle \times dN^{pp}/dp_{\rm T}}$$

What is a jet depends on how one defines a jet

R_{AA} of single particles

Mueller *et al.*, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)

R_{AA} of full jets

ATLAS, Phys. Lett. B 790 (2019) 108

What is a jet depends on how one defines a jet

R_{AA} of single particles

Mueller *et al.*, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)

Different clustering algorithms developed for different purposes

*k*_T algorithm for estimating soft background

R_{AA} of full jets

ATLAS, Phys. Lett. B 790 (2019) 108

anti-k_T algorithm

for identifying energetic jets

C/A algorithm for identifying splitting angles

Jets tagged with heavy quarks

- Produced from initial hard scatterings
- Serve as an ideal probe of the QGP properties
- Provide a unique opportunity for studying the flavor dependence of parton splitting (dead cone effect)

Searches for the flavor dependence of parton splitting

Distribution of splitting angles in pp

Clear suppression of splitting at small θ in *D*-jets *vs*. inclusive jets

Hadron R_{AA} (parton energy loss)

Phys. Lett. B 782 (2018) 474-496

No clear separation between charged hadrons, *D*, and *B*, except at very low p_T

Searches for the flavor dependence of parton splitting

Distribution of splitting angles in pp

Clear suppression of splitting at small θ in *D*-jets *vs*. inclusive jets

Goals:

Hadron *R*_{AA} (parton energy loss)

Phys. Lett. B 782 (2018) 474-496

No clear separation between charged hadrons, D, and B, except at very low p_{T}

 Consistently understand hadron and full jet observables Consistently understand light and heavy flavor jets Use jets to probe properties of the QGP

Theoretical framework of jet quenching

$$d\sigma_{h} = \sum_{abjd} f_{a/p} \otimes f_{b/p} \otimes d\sigma_{ab \to jd} \otimes D_{h/j} (\text{or } J_{j})$$

- $f_{a/p}, f_{b/p} \rightarrow f_{a/A}, f_{b/B}$: cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, ..., measured in pA collisions

$$d\tilde{\sigma}_{h} = \sum_{abjd} f_{a|A} \otimes f_{b|B} \otimes d\sigma_{ab \to jd} \otimes \tilde{D}_{h|j} \text{ (or } \tilde{J}_{abjd}$$

• $D_{h/i} \rightarrow D_{h/i}$: medium modified fragmentation function, hot nuclear matter (final state) effect • Factorization assumption: $\tilde{D}_{h/j} = \sum_{i'} P_{j \to j'} \otimes D_{h/j'}$, nuclear modification of parton j

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$ **)**

$$\mathscr{C}_a^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $\int_{a} f_a f_b \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2$

 $2 \rightarrow 2$ scattering matrices

Parton transport inside the QGP

Linear Boltzmann Transport (LBT)

Elastic scattering ($ab \rightarrow cd$ **)**

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)$$

loss term: scattering rate (for Monte-Carlo simulation)

$$\Gamma_{a}^{\text{el}}(\mathbf{p}_{a}, T) = \sum_{b,c,d} \frac{\gamma_{b}}{2E_{a}} \int \prod_{i=b,c,d} d[p_{i}]f_{b}$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $\int f_a f_b \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left[\mathcal{M}_{ab \to cd} \right]^2$

 $2 \rightarrow 2$ scattering matrices

 $f_b \cdot (2\pi)^4 \delta^{(4)}(p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2$

Inelastic scattering

• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)

• Higher-twist formalism: collinear expansion ($\langle k_{\perp}^2 \rangle \ll l_{\perp}^2 \ll Q^2$)

$$\frac{1}{4}\sin^2\left(\frac{t-t_i}{2\tau_f}\right)$$

Flavor hierarchy in hadron suppression

Perturbative calculation simultaneously describes the R_{AA} of light and heavy hadrons at high p_T [Xing, SC, Qin and Xing, Phys. Lett. B 805 (2020) 135424]

pp baseline within the NLO production + fragmentation framework • Crucial contributions from the gluon fragmentation (or $g \rightarrow Q\bar{Q}$) process

Gluon fragmentation

- dominates h^{\pm} production up to 50 GeV
- contributes to over 40% D up to 100 GeV

Flavor hierarchy in hadron suppression

NLO initial production and fragmentation + Boltzmann transport + hydrodynamic medium for QGP

1.2 CMS 0-10% ALICE 0-5% 0.8 R 44 0.6 0.4 100 10 p_T (GeV)

charged hadron

- g-initiated h & D $R_{AA} < q$ -initiated h & D R_{AA} [$\Delta E_q > \Delta E_{q/c}$]

D meson

p_T (GeV)

• $R_{AA}(c->D) > R_{AA}(q->h) [\Delta E_q > \Delta E_c], R_{AA}(q->D) < R_{AA}(q->h) [different FFs] => R_{AA}(h) \approx R_{AA}(D)$ • Signature of flavor hierarchy of parton ΔE offset by gluon production/fragmentation in hadron R_{AA}

Flavor hierarchy in hadron suppression

- starting from $p_T \sim 8 \text{ GeV}$
- confirmation from future precision measurement

• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson R_{AA}'s

Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above – wait for

From hadrons to full jets

- Jet-medium interactions: medium modification of jets + medium response

 Energy deposition + depletion → jet-induced medium excitation (medium response) Primordial jet partons and medium response cannot be cleanly separated for jet observables

Jet R_{AA} and v₂

RAA

- Including medium response reduces jet energy loss and thus increases the jet R_{AA}

• With R_{AA} fixed, including medium response (coupled to medium flow) increases the jet v_2

Jet substructure

Transverse (*r*) distribution: jet shape

Tachibana, Chang, Qin, Phys. Rev. C 95 (2017) 044909

Longitudinal (z) distribution: jet fragmentation function

Chen, SC, Luo, Pang, Wang, Phys. Lett. B 777 (2018) 86-90

Search for unique signatures of medium response

Hadron suppression in diffusion wake

- Confirmed by recent CMS data [CMS-PAS-HIN-23-006]

• Hadron suppression predicted in the backward direction of jets at $1 < p_T^h < 2 \text{ GeV}$ [Chen, SC, Luo, Pang, Wang, PLB 777 (2018) 86, Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301]

New developments on searching for wake

• Extension from 2D (ϕ -plane) to 3D (η - ϕ) structure of wake [Yang, Luo, Chen, Pang, Wang, Phys. Rev. Lett. 130 (2023) 5, 052301; Yang, Wang, arXiv: 2501.03419]

Example: interference between wave front and energy depletion in di-jet events

Rapidity asymmetry of hadron distribution w.r.t. the leading jet

4 -4

 $\Delta \eta = \eta_h - \eta_{iet}$

 $\Delta \eta = \eta_h - \eta_{jet}$

New developments on searching for wake

- From jet-transport-hydrodynamics simulation to ϕ^4 field simulation

- Jet energy deposition gradually approaches thermalization •
- Mach cone structure for jet energy deposition
- trajectory) \rightarrow possible rich pattern for jet-induced QGP polarization

Cartoon from Serenone et. al., PLB 820 (2021) 136500

• Vortex ring structure: $\vec{\omega}$ parallel to $\vec{p}_{jet} \times \vec{v}_{med}$ in front, antiparallel in back (close to jet

Hadron chemistry as a new signature of medium response

Baryon enhancement

Luo, Mao, Qin, Wang, Zhang, PLB 837 (2023) 137638

Luo, SC, Qin, arXiv:2412.19283

- Larger q and s densities in QGP than in vacuum jets
- Baryon and strangeness enhancement around jets in AA
- Stronger enhancement at larger distance from jet axis

A novel observable: energy-energy correlator (EEC)

[Komiske et. al., PRL 130 (2023) 051901]

- **EEC**: $\frac{d\Sigma}{dR_L} = \int d\vec{n}_1 d\vec{n}_2 \frac{\langle \mathscr{E}(\vec{n}_1)\mathscr{E}(\vec{n}_2) \rangle}{Q^2} \delta(\Delta R_{12} - R_L)$
- Proposed by conformal theory, $EEC(R_{L})$ is scale independent at high energy limit
- Implement a first realistic calculation on light and heavy flavor jet EEC in AA collisions [Xing, SC, Qin, Wang, Phys. Rev. Lett. 134 (2025) 052301]

[Craft et. al., arXiv:2210.09311]

 \mathscr{E} : energy flow in a given direction, $\Delta R_{12} = \sqrt{\Delta \phi_{12}^2 + \Delta \eta_{12}^2}$: relative angle, Q: hard scale

Variation of EEC(R_L) indicates emergence of new scales: hadronization, QGP, quark mass ...

Light vs. heavy flavor jet EEC in pp collisions

• Jet in pp: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

$$\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{\substack{|\theta_{ij} - \theta| < \Delta\theta/2}} \frac{p_{\mathrm{T},i}(\vec{n}_i) p_{\mathrm{T},j}(\vec{n}_j)}{p_{\mathrm{T},j\text{et}}^2}$$

• Flavor (mass) dependence:

- Overall magnitude: charged jet > D-jet > B-jet
- Typical (peak) angle: charged jet < D-jet < B-jet

Suppression of splitting within $\theta_0 \sim m_Q/E_Q$ in vacuum

Light vs. heavy flavor jet EEC in pp collisions

• Jet in pp: Pythia 8 simulation

• EEC analysis (*i*, *j* denote jet constituents)

$$\frac{d\Sigma(\theta)}{d\theta} = \frac{1}{\Delta\theta} \sum_{\substack{|\theta_{ij} - \theta| < \Delta\theta/2}} \frac{p_{\mathrm{T},i}(\vec{n}_i) p_{\mathrm{T},j}(\vec{n}_j)}{p_{\mathrm{T},j\text{et}}^2}$$

• Flavor (mass) dependence:

- Overall magnitude: charged jet > D-jet > B-jet
- Typical (peak) angle: charged jet < D-jet < B-jet

Suppression of splitting within $\theta_0 \sim m_Q/E_Q$ in vacuum

Jet energy dependence

• Higher $p_T \rightarrow \Sigma$ peaks at smaller θ

 $p_{\rm T}\theta_{\rm peak}$ ~ transition scale between pert. and non-pert.

Light vs. heavy flavor jet EEC in central PbPb collisions

Full simulation — Pythia + LBT in hydro

- Flavor hierarchy of EEC preserves, though being modified, in AA collisions
- enhancement at small θ (except for *B*-jet) and large θ

• General features of nuclear modification (AA - pp): suppression at intermediate θ ,

Different contributions to medium modification on EEC

- Medium response enhances EEC at large θ

S: shower partons inherited from Pythia S+R: add medium-induced gluons S+R+M: further add medium response

• Jet energy loss causes suppression over the entire θ region - Medium-induced gluon emission enhances EEC at small θ

Further studies on EEC

Discriminate quark and gluon jet quenching in AA collisions

[Chen, Shen, Xue, Dai, Zhang, Wang, arXiv:2409.13996]

Can be tested by comparing between inclusive jets and γ-jets

Measurement of J/ψ energy correlator in *pp* collisions

[From STAR poster at Quark Matter 2025]

May be used to probe the hadronization process of J/ψ, e.g., c + c̄ → J/ψ + g
[Chen, Liu, Ma, Phy. Rev. Lett. 133 (2024) 191901]

Constraints on jet transport coefficient inside the QGP

 $\hat{\boldsymbol{q}} \equiv d\langle k_{\perp}^2 \rangle / dt \sim \langle F^{ai+}(0)F_i^{a+}(y^-) \rangle$

 QGP is much more opaque than cold nuclear matter to jet propagation [Xie et al., Phys. Rev. C 108 (2023) 1, L011901]

• Jet model improvement + Bayesian statistical analysis \rightarrow temperature and jet energy dependences of \hat{q}

Probing the equation of state of the QGP

[F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355]

Strategy: Fit g from comparing transport model to data Calculate EoS from g

EoS of QGP and diffusion coefficient of heavy quarks

Equation of state

- Agreement with the lattice data

Diffusion coefficient

Simultaneous constraint on QGP properties and transport properties of hard probes

Probing the specific viscosity of the QGP

• Indirect constraint: convert \hat{q} into η/s

 $\eta/s \approx 1.25 T^3/\hat{q}$

weak coupling calculation

• **Outlook**: constrain specific viscosity and speed of sound using medium response

Patterns of jet-induced Mach cone depends on η/s and c_s (EoS)

Neufeld, Phys. Rev. C 79 (2009) 054909

Summary

Probing strongly interacting matter using energetic hadrons and jets

- Perturbative calculation successfully describes hadron suppression at high p_{T}
- Jet-induced medium excitation is crucial for understanding full jet observables
- EEC is an excellent observable for studying flavor dependence of jet quenching
- Jet observables are used to constrain various QGP properties: \hat{q} , EoS, η/s ...

Thank. you!

EEC of partons developed from a single quark

- Single quark \rightarrow LBT + static medium \rightarrow EEC of daughter partons
- Flavor (mass) hierarchy of EEC:

 - Clear strong suppression of Σ below $\theta_0 \sim m_Q/E_{\rm initial}$
- Contributions form medium response and gluon emission show similar hierarchies

• Magnitude: charged > D > B-jet; peak position: charged < D < B-jet (similar to vacuum jets)

30

Effects of trigger bias on the jet EEC

p_{T} trigger in both pp and AA

- AA jets with trigger bias originate from pp jets with higher p_T and initial virtuality scale → Stronger but narrower vacuum splittings
- Can be tested using γ -jets

 p_{T} trigger only in pp (no trigger bias in AA)

 \rightarrow Enhances EEC at small θ , reduces the suppression/enhancement at intermediate/large θ