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Probing quark-gluon plasma (QGP) using jets
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Jet quenching

[ by M. Rybar / ATLAS ]
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• Quantify QGP effects on jets by comparing 
jet spectra between pp and AA collisions

• Nuclear modification factor:

RAA(pT) = dNAA/dpT
⟨NAA

coll⟩ × dNpp/dpT



What is a jet depends on how one defines a jet
RAA of single particles 

3

Mueller et al., Ann. 
Rev. Nucl. Part. Sci. 
62, 361 (2012)

RAA of full jets 

ATLAS, Phys. Lett. 
B 790 (2019) 108
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RAA of full jets 

ATLAS, Phys. Lett. 
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• Different clustering algorithms developed for different purposes

kT algorithm
for estimating 
soft background 

anti-kT algorithm 
for identifying 
energetic jets

C/A algorithm 
for identifying 
splitting angles



Jets tagged with heavy quarks
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• Produced from initial hard scatterings  

• Serve as an ideal probe of the QGP properties 

• Provide a unique opportunity for studying the flavor 
dependence of parton splitting (dead cone effect)

Q
Q

θ0 = mQ/EQ

mcharm = 1.3 GeV
mbeauty = 4.2 GeV

> TQGP



Searches for the flavor dependence of parton splitting
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No clear separation between charged 
hadrons, D, and B, except at very low pT 
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• Consistently understand hadron and full jet observables  
• Consistently understand light and heavy flavor jets 
• Use jets to probe properties of the QGP

Goals:



Theoretical framework of jet quenching
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dσh = ∑
abjd

fa/p ⊗ fb/p ⊗ dσab→jd ⊗ Dh/j (or Jj) dσ̃h = ∑
abjd

fa/A ⊗ fb/B ⊗ dσab→jd ⊗ D̃h/j (or J̃j)

• : cold nuclear matter (initial state) effect, e.g., shadowing, Cronin, … , 
measured in pA collisions

• : medium modified fragmentation function, hot nuclear matter (final state) effect

• Factorization assumption:  , nuclear modification of parton j

fa/p, fb/p → fa/A, fb/B

Dh/j → D̃h/j

D̃h/j = ∑j′ 

Pj→j′ 
⊗ Dh/j′ 



Parton transport inside the QGP
Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )
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Parton transport inside the QGP
Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )
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Elastic scattering (  )ab → cd

𝒞el
a = ∑

b,c,d
∫ ∏

i=b,c,d

d[pi]
2Ea

(γd fc fd − γb fa fb) ⋅ (2π)4δ4(pa + pb − pc − pd) ℳab→cd
2

 scattering matrices2 → 2



Parton transport inside the QGP
Linear Boltzmann Transport (LBT)

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )

loss term: scattering rate  
(for Monte-Carlo simulation)

Γel
a (pa, T) = ∑

b,c,d

γb

2Ea ∫ ∏
i=b,c,d

d[pi]fb ⋅ (2π)4δ(4)(pa + pb − pc − pd) |ℳab→cd |2
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Inelastic scattering
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HQ (p)
g (l) 

(k) 

• Higher-twist formalism: collinear expansion (  ) 

    

• Medium information absorbed in 

⟨k2
⊥⟩ ≪ l2

⊥ ≪ Q2

dΓinel
a

dzdl2⊥
=

dNg

dzdl2⊥dt
= 6αsP(z)l4

⊥ ̂q
π(l2⊥ + z2M2)4 sin2 ( t − ti

2τf )
̂q ≡ d⟨p2

⊥⟩/dt

Majumder PRD 85 (2012); 
Zhang, Wang and Wang, PRL 
93 (2004)



Flavor hierarchy in hadron suppression
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Perturbative calculation simultaneously describes the RAA of light and heavy hadrons at high pT 
[ Xing, SC, Qin and Xing, Phys. Lett. B 805 (2020) 135424 ]

Gluon fragmentation 

• dominates  production up to 
50 GeV 

• contributes to over 40% D up to 
100 GeV
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pp baseline within the NLO production + fragmentation framework 
• Crucial contributions from the gluon fragmentation (or ) processg → QQ̄



Flavor hierarchy in hadron suppression
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NLO initial production and fragmentation + Boltzmann transport + hydrodynamic medium for QGP
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• g-initiated h & D RAA < q-initiated h & D RAA [ΔEg > ΔEq/c] 

• RAA (c->D) > RAA (q->h) [ΔEq > ΔEc], RAA (g->D) < RAA (g->h) [different FFs] => RAA (h) ≈ RAA (D) 

• Signature of flavor hierarchy of parton ΔE offset by gluon production/fragmentation in hadron RAA



Flavor hierarchy in hadron suppression
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• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson RAA’s 
starting from pT ~ 8 GeV

• Predict RAA separation between B and h / D below 40 GeV, but similar values above – wait for 
confirmation from future precision measurement

•

Xing, SC, Qin and Xing, Phys. Lett. B 
805 (2020) 135424
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From hadrons to full jets
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jet

energy 
holes recoil

gluon bremsstrahlung

energy 
deposition

• Energy deposition + depletion  jet-induced medium excitation (medium response) 
• Primordial jet partons and medium response cannot be cleanly separated for jet observables 
• Jet-medium interactions: medium modification of jets + medium response

→



Jet RAA and v2
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He, Chen, Luo, SC, 
Pang, Wang, Phys. Rev. 
C 106 (2022) 044904

RAA v2

• Including medium response reduces jet energy loss and thus increases the jet RAA 

• With RAA fixed, including medium response (coupled to medium flow) increases the jet v2 



Jet substructure
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Tachibana, Chang, Qin, Phys. Rev. C 95 
(2017) 044909

Transverse (r) distribution: jet shape

Longitudinal (z) distribution: 
jet fragmentation function

Chen, SC, Luo, Pang, Wang, Phys. Lett. B 
777 (2018) 86-90

r
δr

z

medium 
response

medium 
response

jet 
quenching



Search for unique signatures of medium response
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Hadron suppression in diffusion wake

depletion

• Hadron suppression predicted in the backward direction of jets at  
[ Chen, SC, Luo, Pang, Wang, PLB 777 (2018) 86, Yang, Luo, Chen, Pang, Wang, PRL 130 (2023) 052301 ] 

• Confirmed by recent CMS data [ CMS-PAS-HIN-23-006 ]

1 < ph
T < 2 GeV

wave front depletion

Δϕγ/Z h

jet

depletion



New developments on searching for wake
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• Extension from 2D ( -plane) to 3D ( - ) structure of wakeϕ η ϕ
[ Yang, Luo, Chen, Pang, Wang, Phys. Rev. Lett. 130 (2023) 5, 052301; Yang, Wang, arXiv: 2501.03419 ]

Example: interference between wave front and energy depletion in di-jet events

Hadron ( ) distribution w.r.t. jet 1Δη
no rapidity gap 

between 1 and 2 
with rapidity gap 
between 1 and 2 

Rapidity asymmetry of hadron distribution w.r.t. the leading jet



New developments on searching for wake
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• From jet-transport-hydrodynamics simulation to  field simulationϕ4

ℒ = 1
2 (∂aϕ)2 − g2

4! ϕ4+Jϕ evolution with jet energy deposition:ϕ
Jian Deng’s talk 
4/26 5:00 pm

Cartoon from Serenone et. 
al., PLB 820 (2021) 136500

front

back

• Jet energy deposition gradually approaches thermalization 
• Mach cone structure for jet energy deposition 

• Vortex ring structure:  parallel to  in front, antiparallel in back (close to jet 
trajectory)  possible rich pattern for jet-induced QGP polarization

⃗ω ⃗pjet × ⃗vmed
→



Hadron chemistry as a new signature of medium response
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• Larger q and s densities in QGP than in vacuum jets 
• Baryon and strangeness enhancement around jets in AA 
• Stronger enhancement at larger distance from jet axis

Luo, Mao, Qin, Wang, Zhang, 
PLB 837 (2023) 137638

Baryon enhancement Strangeness enhancement
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Luo, SC, Qin, arXiv:2412.19283

• Confirmed by recent ALICE data 
• Not seen in recent STAR data



A novel observable: energy-energy correlator (EEC)
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• EEC: 

• Proposed by conformal theory, EEC(RL) is scale independent at high energy limit 
• Variation of EEC(RL) indicates emergence of new scales: hadronization, QGP, quark mass … 
• Implement a first realistic calculation on light and heavy flavor jet EEC in AA collisions

[ Craft et. al., arXiv:2210.09311][ Komiske et. al., PRL 130 (2023) 051901 ]

dΣ
dRL

= ∫ d ⃗n1d ⃗n2
⟨ℰ( ⃗n1)ℰ( ⃗n2)⟩

Q2 δ(ΔR12 − RL)
: energy flow in a given direction, 


 : relative angle, Q: hard scale

ℰ
ΔR12 = Δϕ2

12 + Δη2
12

[ Xing, SC, Qin, Wang, Phys. Rev. Lett. 134 (2025) 052301 ]



• Jet in pp: Pythia 8 simulation 

• EEC analysis (i, j denote jet constituents)

Light vs. heavy flavor jet EEC in pp collisions
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• Flavor (mass) dependence: 
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Suppression of splitting within  in vacuumθ0 ∼ mQ/EQ
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• Jet in pp: Pythia 8 simulation 

• EEC analysis (i, j denote jet constituents)
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Light vs. heavy flavor jet EEC in central PbPb collisions
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• Flavor hierarchy of EEC preserves, though being modified, in AA collisions 

• General features of nuclear modification (AA - pp): suppression at intermediate , 
enhancement at small  (except for B-jet) and large 
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Different contributions to medium modification on EEC
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S: shower partons inherited from Pythia 
S+R: add medium-induced gluons 
S+R+M: further add medium response

• Jet energy loss causes suppression over the entire  region 

• Medium-induced gluon emission enhances EEC at small  

• Medium response enhances EEC at large 
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Further studies on EEC
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Discriminate quark and gluon jet 
quenching in AA collisions

[ Chen, Shen, Xue, Dai, Zhang, Wang, arXiv:2409.13996 ] [ From STAR poster at Quark Matter 2025 ]

Measurement of  energy 
correlator in pp collisions

J/ψ

• Can be tested by comparing between 
inclusive jets and -jetsγ

• May be used to probe the hadronization 
process of , e.g.,   

    [ Chen, Liu, Ma, Phy. Rev. Lett. 133 (2024) 191901 ]

J/ψ c + c̄ → J/ψ + g

AA/pp



Constraints on jet transport coefficient inside the QGP

24

̂q ≡ d⟨k2
⊥⟩/dt ∼ ⟨Fai+(0)Fa+

i (y−)⟩

nucleus        QGP≪

[ JET, Phys. Rev. C 90 (2014) 1, 014909 ]

• Jet model improvement + Bayesian 
statistical analysis  temperature and jet 
energy dependences of 

→
̂q

[ Xie et al., Phys. Rev. C 108 (2023) 1, L011901 ]

• QGP is much more opaque than cold 
nuclear matter to jet propagation
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Probing the equation of state of the QGP

Strategy:  
Fit g from comparing 

transport model to data 

Calculate EoS from g

[ F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355 ]

Transport 

pa ⋅ ∂fa(xa, pa) = Ea(𝒞el
a + 𝒞inel

a )

Strong coupling strength
g(E, T)

Thermal mass of partons

m2
g = 1

6 g2 [(Nc + 1
2 nf) T2 + Nc

2π2 Σqμ2
q]

m2
u,d = N2

c − 1
8Nc

g2 [T2 +
μ2

u,d
π2 ]

m2
s − m2

0s = N2
c − 1
8Nc

g2 [T2 + μ2
s

π2 ]

      ϵ = TdP(T)/dT − P(T), s = (ϵ + P)/T

Equation of state

PQPM(mu, md, . . . , T) = ∑
i=u,d,s,g

di ∫ d3p
(2π)3

| ⃗p |2

3Ei(p) fi(p) − B(T)
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EoS of QGP and diffusion coefficient of heavy quarks

Equation of state Diffusion coefficient

• Agreement with the lattice data 
• Simultaneous constraint on QGP properties and transport properties of hard probes
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Probing the specific viscosity of the QGP
• Indirect constraint: convert  into ̂q η/s

̂q/T3

• Outlook: constrain specific viscosity and speed of sound using medium response

weak coupling 
calculation

η/s ≈ 1.25 T3/ ̂q η/s
from jet 
from hydro } consistent

Karmakar et. al., Phys. Rev. 
C 108 (2023) 044907

η
s

= 1
4π

η
s

= 3
4π

Neufeld, Phys. Rev. C 79 (2009) 054909

Patterns of jet-induced Mach cone 
depends on  and  (EoS)η/s cs



Summary
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Probing strongly interacting matter using energetic hadrons and jets 

• Perturbative calculation successfully describes hadron suppression at high pT 

• Jet-induced medium excitation is crucial for understanding full jet observables 

• EEC is an excellent observable for studying flavor dependence of jet quenching 

• Jet observables are used to constrain various QGP properties: , EoS,  …̂q η/s

Thank. you!
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EEC of partons developed from a single quark
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• Single quark  LBT + static medium  EEC of daughter partons 

• Flavor (mass) hierarchy of EEC: 
• Magnitude: charged > D > B-jet; peak position: charged < D < B-jet (similar to vacuum jets) 

• Clear strong suppression of  below  

• Contributions form medium response and gluon emission show similar hierarchies

→ →
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Effects of trigger bias on the jet EEC
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