CEPC Analysis Tutorial

Environment Setup

Vscode + Remote-ssh + Anaconda + uproot/Root/Awkward

Install Vscode on your local computer

Download and install Vscode: https://code.visualstudio.com/Download

Install the related plugins

Search the plugins you want to install through the following side navigation

CEPC Analysis Tutorial

https://code.visualstudio.com/Download

®

@ EXPLORER

Welcome

Open Folder

Clone Repository

Install the following plugins:

Remote-ssh, Jupyter

Once it's done, reopen the Vscode and you should see the following navigation

Setup your Ixlogin account

CEPC Analysis Tutorial

Add your Ixlogin account through the Remote Explorer:

Once you click “new remote”, you should see:

Enter SSH Connection Command

Press 'Enter' to confirm your input or 'Escape’ to cancel

Log in your Ixlogin account through “ssh -Y username@login.ihep.ac.cn”

Click "Open Folder”, choose your base folder and you should see all the files
located in this folder (e.g. /publicfs/cms/user/{your name}).

®

@ EXPLORER

Open Folder

Clone Repository

read our docs

CEPC Analysis Tutorial

You could also access the bash terminal through “Command +
J'"

Install Anaconda into your Ixlogin workplace

Download the Anaconda package to your workplace, the version of the package
can be found: https://repo.anaconda.com/archive/

Select the correct version you want and download it through

wget https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linu:

Install Anaconda through following commends:

chmod +x Anaconda3-2023.09-0-Linux-x86_64.sh
./Anaconda3-2023.09-0-Linux-x86_64.sh

If you install it successfully, the command “conda -V" will show you the version of
the anaconda you installed.

Install the virtual analysis environment

conda create -n myenv_name python=3.8
conda activate myenv_name

Then you will go into your analysis environment, remember to reactivate your env
after you login your IHEP account (myenv_name can be any string you like, | will

CEPC Analysis Tutorial

use “test” for teaching reasons)

Install the analysis required package:

conda

conda

mamba
mamba
mamba
mamba
mamba

activate myenv_name

install mamba

install root
install uproot
install pandas
install matplotlib
install mplhep

pip install awkward-pandas

Once it's done, create a jupyter notebook and test the installation:

touch

test.ipynb

Select the python env as your jupyter kernel.

testlipynb X

© wangzebing [SSH: Ixlogin.ihep.ac.cn]

+ Code + Markdown | [> RunAll = Clear All Outputs | i= Outline -

CEPC Analysis Tutorial

0Qmos

[, Select Kernel

Select a Python Environment

-+ Create Python Environment

% QAG (Python 3.10.14)

base (Python 3.11.5) anac

hzgenv (Python 3.8.15) an:

pennytest (Python 3.10.14) anaconda/a
QC (Python 3.6.15) an E

Python 3.9.18 [bin/pyth
Python 3.9.18 jusr/bin/python3

testlipynb X

-+ Code - Markdown | [> Run All O Restart = Clear All Outputs | [& Variables = Outline ---

b= Dy Dy B o

genv/binfpython

[pennytest/bin/python

Recommended

Conda Env

Global Env

@O -

£ test (Python 3.8.20)

if you can't find the correct kernel, follow the below tutorial to add your kernel:

https://www.cnblogs.com/chester-cs/p/14653149.html

Run the following commands to test:

import
import

import
import
import
import
import

ROOT
math

uproot

numpy as np

pandas as pd
matplotlib.pyplot as plt
mplhep as hep

plt.style.use(hep.style.CMS)

CEPC Analysis Tutorial

https://www.cnblogs.com/chester-cs/p/14653149.html

import awkward as ak

If it's successful running, congratulations! You are ready for the data analysis.

Awkward tutorial

CEPC Analysis Tutorial

What is Awkward Array for? How does it compare to other libraries? v

Python's builtin lists, dicts, and classes can be used to analyze arbitrary data structures,
but at a cost in speed and memory. Therefore, they can't be used (easily) with large

datasets.

Pandas DataFrames (as well as Polars, cuDF, and Dask DataFrame) are well-suited to

tabular data, including tables with relational indexes, but not arbitrary data structures. If a
DataFrame is filled with Python's builtin types, then it offers no speed or memory
advantage over Python itself.

NumPy is ideal for rectangular arrays of numbers, but not arbitrary data structures. If a
NumPy array is filled with Python's builtin types, then it offers no speed or memory
advantage over Python itself.

Apache Arrow (pyarrow) manages arrays of arbitrary data structures (including those in

Polars, cuDF, and to some extent, Pandas), with great language interoperability and
interprocess communication, but without manipulation functions oriented toward data

analysts.

Awkward Array is a data analyst-friendly extension of NumPy-like idioms for arbitrary data
structures. It is intended to be used interchangeably with NumPy and share data with
Arrow and DataFrames. Like NumPy, it simplifies and accelerates computations that
transform arrays into arrays—all computations over elements in an array are compiled. Also

like NumPy, imperative-style computations can be accelerated with Numba.

Note that there is also a ragged array library with simpler (but still non-rectangular) data

types that more closely adheres to array APIs.

CEPC Analysis Tutorial

High performance

Like NumPy, Awkward Array performs computations in fast, optimised kernels.
| large_array = ak.Array([[1, 2, 31, [I, [4, 5]1] x 1_000_000) ©
We can compute the sumin 3.37 ms + 107 ps on areference CPU:

| ak.sum(large_array)

np.int64(15000000)
The same sum can be computed with pure-Python over the flattened array in 369 ms + 8.07 ms :

large_flat_array = ak.ravel(large_array)

sum(large_flat_array)

np.1int64(15000000)

https://awkward-array.org/doc/main/getting-started/index.html

CEPC Analysis Tutorial

https://awkward-array.org/doc/main/getting-started/index.html

