
C.Zhang, 28Oct2024

To develop a n-tuple producer or a new algorithm under
CEPCSW

TPC PID as an example

1

Basic structure/syntax for a SW plugin
• Under the new SW package we just downloaded

• cd Analysis/

• as an exercise we write code here

• mkdir DumpPID

• echo add_subdirectory(DumpPID) >> CMakeLists.txt

• tell SW your package DumPID need to be complied

• cd DumpPID; touch CMakeLists.txt

• necessary libs for our code, very common, we can just make a copy from somewhere

• /publicfs/cms/user/zhangjie/cepc/CEPCSW/Analysis/DumpPID/CMakeLists.txt

• mkdir src; cd src

• DumpPID.cpp, DumpPID.h

2

• DumpPID.h

Basic structure/syntax for a SW plugin

•Name of the algorithm you are
developing

• 3 mandatory member functions
just copy/paste

3

• DumpPID.h

Basic structure/syntax for a SW plugin

•The data we will play with in the
main function

• float/double/vector
•How to find the dedicated

edm4hep::XXXX class?
•Google
•$EDM4HEP point out all

corresponding sources
•What info. can be read out

from RecDqdxCollection

/cvmfs/cepcsw.ihep.ac.cn/prototype/releases/externals/103.0.2/EDM4hep/include/edm4hep

4

Basic structure/syntax for a SW plugin
• DumpPID.cpp

• Constructor

•declareProperty defines the interface of the algo. to outside
•For example, we can control the output root file name (default ~ pid.root)

using the keyword of OutputFile in configure script (we will see this later)

5

• DumpPID.cpp

• Initialize()

Basic structure/syntax for a SW plugin

•Place to define a ROOT::TTree/Branch
for Ntuple producer

•To initialise services, GeomSvc, PIDSvc
(see the complete code)

•Overall the common futures for all
events in the event-loop

•Must return StatusCode::XXXX

6

Basic structure/syntax for a SW plugin
•DumpPID.cpp
•execute() = eventloop

•Operate input data event-by-event
•One can calculate

• transverse momenta of a track
• invariant mass of tracks
•probability of particle types
•all variables you are interested in.

•Already know what we can do with
edm4hep::RecDqdx by checking its
source file

•Must return StatusCode::XXXX

7

Basic structure/syntax for a SW plugin

•DumpPID.cpp
• finalize()

•Write out the TTree or do nothing

•Copy the DumpPID.cpp and .h to working-area and re-compile your SW

• /publicfs/cms/user/zhangjie/cepc/CEPCSW/Analysis/DumpPID/src/
DumpPID.cpp and .h

8

Setup your plugin
• Should start with official scripts

• From working directory, CEPCSW/Detector/DetCRD/
scripts/TDR_o1_v01/sim.py and tracking.py

• Need to know what have been produced by upstream.
In this exercise, it’s TPCDndxAlg

• We have a interface for output file name. (see page 5)

• Insert your algo. to a proper location. Or it can be
used standalone when you have some made ready
files where the upstream products saved.

9

Generate events and plots

10

• Generate some charged Pions (pi-) and Kaons (K-)
• Find all scripts for job submit and the made-ready root files here

• /publicfs/cms/user/zhangjie/cepc/CEPCSW/sub_condor.sh and dump_condor.sh
• Some made-ready files with large statistics

• /publicfs/cms/user/zhangcg/cepc/fromGZhao/CEPCSW/tuples/anatuples/
• Based on Kaon and Pion custom.root you generated or you can use the made-ready ones.

• Check Kaon and Pion ionisation dN/dx distributions with any tools

• sim.py

Thanks for your attention

• The complete package of PID in the Reconstruction/ParticleID/ to check something
more.

• There are many contributions you can do

• TPC+ToF PID performance is bad for muon and electron,

• Primary/secondary vertex reconstruction not available in current SW,
• A working version is ready, need to check its performance

• …

• …

•

11

