

CHLCP, QINGDAO, November 2024

First determination of the spin-parity of the E_c (3055)⁺⁽⁰⁾ baryons

Guanyue Wan, Peking University in representative of the LHCb Collaboration

Outline

- Motivation & overview
- \succ Event selection
- ➢ Mass fit & signal extraction
- > Amplitude analysis
- \succ J^P determination of $E_c(3055)^{+(0)}$
- > Systematics
- > Summary

Introduction

Singly heavy baryons

- ➢ Good lab for non-perturbative QCD
 - Many undiscovered/determined states
 - Various theoretical explanations
- Pinning down the state:
 - ➢ Mass, width, decay modes
 - > Spin-parity
 - Decay parameter

Singly heavy baryon:

- A heavy quark (c,b) and two light quarks (u,d,s)
- In the relative frame:
 - Dynamics governed by the light quark pairs (*di-quark*)
- ≻ Rich spectrum:
 - Ground states: $\overline{3}_F(\Lambda, \Xi) / 6_F(\Sigma, \Xi', \Omega)$
 - Excitation modes: λ/ρ -mode

Decay parameter

Under helicity basis:

$$\alpha_{\Xi_b \to \Xi_c^{**} \pi} \equiv \frac{|H_\uparrow|^2 - |H_\downarrow|^2}{|H_\uparrow|^2 + |H_\downarrow|^2}$$

- Reflect parity violation in the transition
- > If the initial (Ξ_b) & final (Ξ_c^{**}) particle have similar structure:
 - Governed by $b \rightarrow c$ weak decay
 - Pure parity violation, $\alpha_{\Xi_b \to \Xi_c^{**} \pi} \sim -100\%$
- If not: deviation from -100%

TABLE XIV: The predicted up-down asymmetries of $\mathcal{B}_b \to \mathcal{B}_c P$ decays. The asymmetries are given in unit of %. The asterisks in the first column indicate that the baryons in the final states are radial excited.

Type	Mode	$P=\pi^-$	$P=K^-$	$P = D^-$	$P=D_s^-$	Unit :
(i)	$\alpha(\Lambda_b \to \Lambda_c P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.98\substack{+2.41\\-0.00}$	$-98.47\substack{+8.91\\-1.52}$	$-98.06\substack{+9.41\\-1.87}$	%
(i)	$\alpha(\Xi_b^0 \to \Xi_c^+ P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.40\substack{+9.01\\-1.59}$	$-97.96\substack{+9.52\\-1.96}$	
(i)	$\alpha(\Xi_b^-\to \Xi_c^0 P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.39\substack{+9.01\\-1.59}$	$-97.96\substack{+9.53\\-1.96}$	J
(i)*	$\alpha[\Lambda_b \to \Lambda_c(2765)P]$	$-100.00\substack{+2.14\\-0.00}$	$-99.98\substack{+2.39\\-0.00}$	$-96.61^{+10.70}_{-3.32}$	$-95.54^{+11.49}_{-4.46}$	
(ii)	$\alpha(\Omega_b \to \Omega_c P)$	$59.92\substack{+9.88\\-9.22}$	$59.93\substack{+9.88\\-9.22}$	$59.95\substack{+14.95\-13.54}$	$59.90\substack{+14.95\-13.53}$	
(ii)*	$\alpha[\Omega_b \to \Omega_c(3090)P]$	$60.02\substack{+9.88\\-9.23}$	$60.02\substack{+9.88\\-9.23}$	$59.49\substack{+14.93 \\ -13.47}$	$59.23\substack{+14.92\-13.43}$	
(iii)	$\alpha[\Lambda_b \to \Lambda_c(2595)P]$	$-98.86^{+4.77}_{-1.04}$	$-98.84^{+4.79}_{-1.05}$	$-97.86^{+9.63}_{-2.03}$	$-97.57^{+9.93}_{-2.25}$	
(iii)	$\alpha[\Xi_b^0 \to \Xi_c^+(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.77\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)	$\alpha[\Xi_b^- \to \Xi_c^0(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.76\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
$(iii)^*$	$\alpha[\Lambda_b \to \Lambda_c(2940)P]$	$-98.86\substack{+4.76\\-1.03}$	$-98.84\substack{+4.78\\-1.05}$	$-97.04\substack{+10.41\\-2.81}$	$-96.36\substack{+10.94\\-3.60}$	
						Ref:

Ref:1811.09265

Analysis overview

- > In $\Xi_b^{0(-)} \to \Xi_c^{**+(0)} \pi^-$ decay, where $\Xi_c^{**+(0)} \to D^{+(0)} \Lambda^0$
 - $D^{+(0)} \rightarrow K\pi\pi(K\pi)$
 - $\Lambda^0 \rightarrow p\pi$ (LL/DD categories)
- Run2 2016-18 data sample
 - LL/DD separated before amplitude analysis

- ➢ Strategy:
 - 1. Event selection

 $\Xi_{h}^{0(-)}$

2. Signal extraction (\mathcal{E}_b mass fit)

 $E_{c}^{**+(0)}$

 π

 $D^{+(0)}$

- 3. Amplitude analysis
- 4. Spin-parity determination
 - Validation (toy study)
- 5. Systematic uncertainties

 Λ^0

The LHCb Detector (Run2)

Large Hadron Collider beauty experiment:

- Single-arm forward region:
 - Designed for collecting heavy flavor events
 - b-Factory
- Dedicated vertex detector:
 - Excellent vertex, impact parameter resolution
- Tracking system: good momentum resolution
- PID system: hadron and muon identification
- Hardware & Software trigger

Event selection

Pre-selection

- Stripping lines 28r2/29r2/34:
 - Lb2DLambda0LLpi, Lb2DLambda0DDpi,
 - Xib2D0Lambda0LLpi, Xib2D0Lambda0DDpi

Table 1: Trigger requirements

L0	Hadron TOS Global TIS
Hlt 1	TrackMVA TwoTrackMVA
Hlt 2	Topo2/3/4Body TOS

Table 3 : Training Variables

		Particle	Variables	
Particles	Requirements			
	ProbNNghost < 0.8	 	$p_T, \chi^2_{IP}, \chi^2_{FD},$	
π	ProbNNpi > 0.1	$\dot{-}b$	DIRA, η , $\chi^2_{\mu t x}$	
K	ProbNNk > 0.2			
D invariant mass	$ m_{K\pi(\pi)} - M_{D^{+(0)}}^{PDG} < 20 \text{ MeV}$	Λ^0	$p_T, FD,$ $\chi^2_{vtx}, \chi^2_{FD}, \chi^2_{IP}$ (LL only)	
Λ ⁰ invariant mass (LL/DD)	$ m_{p\pi} - M_{\Lambda}^{PDG} < 6 \text{ MeV}$	D	p_{T} , χ^{2}_{IP}	
$\mathcal{Z}_{c}^{+(0)}$ invariant mass [MeV] $(\mathcal{Z}_{b}^{0(-)}, \mathcal{D}_{LHCP}^{+(0)} \Lambda constrained with DTF)$	$m_{\Xi_c^{+(0)}} < 3400~{ m MeV}$ Guanyue Wan, Peking University	π^{-} from Ξ_{b}	p_T , χ^2_{IP}	

Table 2: Pre-selections

MVA selection

- Training samples
 - Signal from MC within signal region :

 $\left|m_{D\Lambda\pi} - m_{\Xi_b}^{PDG}\right| < 50 MeV$

- Background from upper mass sideband of data : $300 MeV < m_{D\Lambda\pi} m_{\Xi_b}^{PDG} < 700 MeV$
- MLP evaluated for Ξ_b^0/Ξ_b^- , LL/DD separately
- Optimized with FoM dedicated to amplitude analysis:

$$F(t) = \frac{S(t)}{S(t) + B(t)} \times \frac{S(t)}{\sqrt{S(t) + B(t)}}$$

Table 4 : Training Variables

Particle	Variables
Ξ_b	$p_T, \chi_{IP}^2, \chi_{FD}^2,$ DIRA, η, χ_{vtx}^2
Λ^0	$p_T, FD,$ $\chi^2_{vtx}, \chi^2_{FD}, \chi^2_{IP}$ (LL only)
D	p_T , χ^2_{IP}
π^- from Ξ_b	p_T , χ^2_{IP}

 Ξ_b mass fit

- Signal model: Gaussian + DSCB (parameters determined from MC)
- Partial reconstruction: shape from fast simulation
- Combinatorial background: exponential
- Simultaneously for LL & DD

CLHCP 2024

PDG value: 5791.9 ± 0.5 MeV

ulation -			
ulation	Parameters	Fit Result(DD)	Fit Result(LL)
	$\mu_{\Xi^0_b}$	5790.4±	0.8 MeV
	$\sigma_{\Xi_b^0}$	14.1±0	.9 MeV
Guanvue Wan Peking University-	signal yield	411±24	108±13

Extracted spectrum

- \succ Extract pure Ξ_b with sPlot method <u>10.1016/j.nima.2005.08.106</u>
 - $\mathcal{Z}_c(3055)^+$ observed
 - $\Xi_c(3080)^+$ with significance of 4.4σ
 - Non-resonance component
- Dalitz variable distributions extracted

Guanyue Wan, Peking University

Helicity amplitude analysis

Helicity amplitude

► Helicity couplings in the $\Xi_b \to \Xi_c \pi$, $\Xi_c^{**} \to D\Lambda$, $\Lambda \to p\pi$ decay chain:

Amplitude model

Coherent and incoherent sum:

$$f(m_{D\Lambda},\vec{\Omega};\vec{\nu}) = |M|^2 = \sum_{\lambda_{\Xi_b},\lambda_p} \left| \sum_{\lambda_{\Xi_c},\lambda_{\Lambda}} A_{\Xi_c^{**}(3055)} + \sum_{\lambda_{\Xi_c},\lambda_{\Lambda}} A_{\Xi_c^{**}(3080)} + \sum_{\lambda_{\Xi_c},\lambda_{\Lambda}} A_{Non-resonance} \right|^2$$

▶ Relativistic Breit-Wigner for $\mathcal{Z}_c^{**}(3055)$ and $\mathcal{Z}_c^{**}(3080)$:

$$R_{BW}(m_{D\Lambda}|m_0,\Gamma_0,l_p,l_d) = B_{l_p}(p,p_0,d) \left(\frac{p}{m_{\Xi_b}}\right)^{l_p} BW(m_{D\Lambda}|m_0,\Gamma_0,l_d) B_{l_d}(q,q_0,d) \left(\frac{q}{m_0}\right)^{l_d}$$

Exponential lineshape for non-resonance:

$$R_{NR}\left(m_{D\Lambda}|a_{slope}\right) = B_{l_p}(p, p_0, d) \left(\frac{p}{m_{\Xi_b}}\right)^{l_p} e^{-am_{D\Lambda}^2} B_{l_d}(q, q_0, d) \left(\frac{q}{m_0}\right)^{l_d}$$

Likelihood construction

sFit likelihood:

$$\log \mathcal{L}(\vec{\nu}) = \frac{\sum_{i \in data} w_i}{\sum_{i \in data} w_i^2} \sum_{i \in data} w_i \times \log \left[\mathcal{P}(m_{D\Lambda}^i, \vec{\Omega}^i | \vec{\nu}) \right],$$

where PDF is matrix element mode square:

$$\mathcal{P}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) = \frac{1}{I(\vec{\nu})} \sum_{\lambda_{\Xi_b},\lambda_p} \left| \mathcal{M}(m_{D\Lambda},\vec{\Omega}|\vec{\nu}) \right|^2 \times \Phi(m_{D\Lambda},\vec{\Omega})\epsilon(m_{D\Lambda},\vec{\Omega}),$$

efficiency encoded with MC integral:

$$I(\vec{\nu}) \equiv \int \sum_{\lambda_{\Xi_b}, \lambda_p} \left| \mathcal{M}(m_{D\Lambda}, \vec{\Omega} | {}^2\vec{\nu}) \right| \Phi\epsilon(m_{D\Lambda}, \vec{\Omega}) dm_{D\Lambda} d\vec{\Omega}$$

> Fit parameters \vec{v} :

- helicity couplings of $\mathcal{Z}_c^{**}(3055), \mathcal{Z}_c^{**}(3080)$, non-resonances
- $m_0, \Gamma_0 \text{ of } \Xi_c^{**}(3055)$
- $J^P_{\Xi^{**}_c(3055)}$
- > For each $J_{Z_c^{**}(3055)}^P$ hypotheses, minimized likelihood are compared

Run2, $\Xi_b^0 \to \Xi_c^{**+} \pi^-$ channel

Hypotheses tests

 $> J^P_{\mathcal{Z}^{**}_c(3055)} = 3/2^+$ favored

- among all tested hypotheses: $1/2^{\pm}$, $3/2^{\pm}$, $5/2^{\pm}$, $7/2^{\pm}$
- with rejection significance $n_{\sigma} \ge 6.5\sigma$ (from toy study)

	$J^P_{\Xi_c(3055)^+}$	$lpha_{arepsilon_b^0 ightarrow arepsilon_c(3055)^+ \pi^-}$	n_{σ}
Favored	$3/2^+$	-0.92 ± 0.10	-
	$1/2^{-}$	-0.10 ± 0.17	12.9σ
	$1/2^{+}$	$+0.31\pm0.13$	11.0σ
	$3/2^{-}$	$+0.18\pm0.14$	7.3σ
	$5/2^{-}$	-0.12 ± 0.14	6.5σ
	$5/2^{+}$	$+0.52\pm0.14$	9.8σ
	$7/2^{-}$	$+0.41\pm0.16$	10.7σ
	$7/2^{+}$	$+0.12\pm0.14$	10.9σ

Projections to $\cos \theta$ for different hypothesized fits:

17

Run2, $\Xi_h^0 \to \Xi_c^{**+} \pi^-$ channel

Best fit projections: $J_{\Xi_{c}^{**}(3055)}^{P} = 3/2^{+}$

Table 1: Measured $\Xi_c^{**}(3055)$ properties

μ_0 [MeV]	$\Gamma_0[MeV]$	$\alpha_{\Xi_b \to \Xi_c^{**}\pi}$
3054.52 ± 0.36	8.01 ± 0.76	-0.92 ± 0.10

PDG : $\mu_0 = 3055.9 \pm 0.4$ $\Gamma_0 = 7.8 \pm 1.9$

Rejection significance

- > Toys samples generated for alternative J^P hypotheses (J^P_{dis})
 - Parameters optimized
- Using test statistics:

$$t \equiv 2\ln\left[\mathcal{L}(J^P = 3/2^+)/\mathcal{L}(J^P_{\text{disfavor}})\right] = 2\Delta\log\mathcal{L}(3/2^+, \text{dis}),$$

> Significance rejecting J_{dis}^{P} is determined with:

$$n_{\sigma}(J_{ ext{disfavor}}) = rac{t_{ ext{data}} - \mu(t_{J_{ ext{disfavor}}})}{\sigma(t_{J_{ ext{disfavor}}})},$$

$J^P_{\Xi_c(3055)^+}$	n_{σ}
$3/2^+$	-
$1/2^{-}$	12.9σ
$1/2^+$	11.0σ
$3/2^{-}$	7.3σ
$5/2^{-}$	6.5σ
$5/2^+$	9.8σ
$7/2^{-}$	10.7σ
$7/2^+$	10.9σ

LHCb approval

Systematic uncertainties

Systematics

Source	$\sigma_m [{ m MeV}/c^2]$	$\sigma_{\Gamma} \left[\mathrm{MeV} / c^2 ight]$	σ_{lpha}	$\sigma_{R_{\mathcal{B}}}$
Amplitude fit bias	—	_	—	_
Hadron masses	± 0.05	—	—	—
Momentum scale	± 0.01	—	—	—
Resolution	± 0.00	± 0.07	± 0.00	± 0.000
Simulation sample	± 0.15	± 0.30	± 0.02	± 0.002
Trigger correction	± 0.01	± 0.03	± 0.02	± 0.000
Λ categories	± 0.03	± 0.04	± 0.01	± 0.002
Ξ_b^0 mass fit model	± 0.03	± 0.13	± 0.01	± 0.001
Angular momentum	± 0.00	± 0.00	± 0.04	± 0.002
Nonresonant model	± 0.00	± 0.00	± 0.00	± 0.000
$\Xi_c(3080)^+$ width	± 0.01	± 0.01	± 0.00	± 0.003
$\Xi_c(3080)^+ { m mass}$	± 0.00	± 0.02	± 0.00	± 0.000
Clone tracks	± 0.02	± 0.03	± 0.01	± 0.003
Total	± 0.17	± 0.34	± 0.05	± 0.006

Table 3: Biases and systematic uncertainties for the $\Xi_b^0 \to \Xi_c(3055)^+\pi^-$ channel.

Summary

Theoretical interpretations of $\mathcal{E}_c(3055)$

References	Theoretical model	J^{P} of $E_{c}(3055)$
Eur. Phys. J. A 37 (2008) 217–225	Faddeev method	5/2 ⁺ (1D)
<u>Phys. Rev. D 78 (2008) 056005</u>	Regge phenomenology	5/2 ⁺ (1D)
Phys. Rev. D 84 (2011) 014025	QCD-motivated relativistic quark model	3/2 ⁺ (1D)
Phys. Rev. D 86 (2012) 034024	Chiral quark model	3/2+ (1D)
Eur. Phys. J. A 82 (2015) 51	Relativistic flux tube model	3/2 ⁺ (1D)
Phys. Rev. D 94 (2016) 114016	QCD sum rules within HQET	3/2 ⁺ (1D)
Phys. Rev. D 96 (2017) 114003	3P0 model	$1/2^+(\overline{3}_F), 3/2^+(6_F)$ (2S)
Eur. Phys. J. C 79 (2019)167	Hadron molecular state	1/2 ⁻ , 3/2 ⁻ (molecular)

Summarized in Rept.Prog.Phys. 80 (2017) no.7, 076201

Or see our paper draft

Decay parameter

- → Our measurement: $\alpha_{\Xi_b \to \Xi_c(3055)^+ \pi} 0.92 \pm 0.10 \pm 0.05$
- ➤ Calculations for similar decay modes $\approx -100\%$
 - $\overline{\mathbf{3}}_F \to \overline{\mathbf{3}}_F$ beauty to charm transitions
 - pure parity violation
- > Only consistent with our measurement under hypothesis $J^P = 3/2^+$

TABLE XIV: The predicted up-down asymmetries of $\mathcal{B}_b \to \mathcal{B}_c P$ decays. The asymmetries are given in unit of %. The asterisks in the first column indicate that the baryons in the final states are radial excited.

Type	Mode	$P = \pi^-$	$P = K^-$	$P = D^-$	$P = D_s^-$	Unit : %
(i)	$\alpha(\Lambda_b \to \Lambda_c P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.98\substack{+2.41\\-0.00}$	$-98.47\substack{+8.91\\-1.52}$	$-98.06\substack{+9.41\\-1.87}$	
(i)	$\alpha(\Xi_b^0 \to \Xi_c^+ P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.40\substack{+9.01\\-1.59}$	$-97.96\substack{+9.52\\-1.96}$	
(i)	$\alpha(\Xi_b^-\to \Xi_c^0 P)$	$-99.99\substack{+2.24\\-0.00}$	$-99.97\substack{+2.41\\-0.00}$	$-98.39\substack{+9.01\\-1.59}$	$-97.96\substack{+9.53\\-1.96}$	
 (i)*	$\alpha[\Lambda_b \to \Lambda_c(2765)P]$	$-100.00\substack{+2.14\-0.00}$	$-99.98\substack{+2.39\\-0.00}$	$-96.61^{+10.76}_{-3.32}$	$-95.54^{+11.49}_{-4.46}$	
(ii)	$\alpha(\Omega_b o \Omega_c P)$	$59.92\substack{+9.88\\-9.22}$	$59.93\substack{+9.88\\-9.22}$	$59.95\substack{+14.95 \\ -13.54}$	$59.90\substack{+14.95\-13.53}$	
(ii)*	$\alpha[\Omega_b \to \Omega_c(3090)P]$	$60.02\substack{+9.88\\-9.23}$	$60.02\substack{+9.88\\-9.23}$	$59.49\substack{+14.93 \\ -13.47}$	$59.23\substack{+14.92\-13.43}$	
 (iii)	$\alpha[\Lambda_b \to \Lambda_c(2595)P]$	$-98.86\substack{+4.77\\-1.04}$	$-98.84_{-1.05}^{+4.79}$	$-97.86\substack{+9.63\\-2.03}$	$-97.57\substack{+9.93\\-2.25}$	
(iii)	$\alpha[\Xi_b^0 \to \Xi_c^+(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.77\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)	$\alpha[\Xi_b^- \to \Xi_c^0(2790)P]$	$-99.13\substack{+4.44\\-0.84}$	$-99.12\substack{+4.44\\-0.84}$	$-98.58\substack{+8.76\\-1.42}$	$-98.39\substack{+9.02\\-1.59}$	
(iii)*	$\alpha[\Lambda_b \to \Lambda_c(2940)P]$	$-98.86\substack{+4.76\\-1.03}$	$-98.84\substack{+4.78\\-1.05}$	$-97.04\substack{+10.41\\-2.81}$	$-96.36\substack{+10.94\-3.60}$	Dof-1011 (
						KEI.TOTT.U

Conclusion

- The $\Xi_b^0 \to D^+ \Lambda^0 \pi^-$ and $\Xi_b^- \to D^0 \Lambda^0 \pi^-$ decays are observed for the first time:
- $\geq \Xi_c(3055)^{+(0)}$ mass and width are measured
- $\geq \Xi_c(3055)^{+(0)}$ spin-parity measured to be $3/2^+$
 - With significance of $6.5(3.5)\sigma$
 - First determination with significance over 5σ of a charm-strange baryons
- > Decay parameter in $\Xi_b^{0(-)} \to \Xi_c(3055)^{+(0)}\pi^-$ measured to be:

 $-0.92 \pm 0.10 \pm 0.05(-0.92 \pm 0.16 \pm 0.22)$

- First time in beauty to charm + pseudoscalar decays
- \succ Consistent with first *D*-wave, λ -mode excitation of $\overline{3}_F$ category

Thanks for your attention!

$\mathcal{Z}_b^- \to \mathcal{Z}_c^{**0} \pi^-$ channel results

Ξ_b mass fit

- Signal model: Gaussian + DSCB (parameters determined from MC)
- Partial reconstruction: shape from fast simulation
- Combinatorial background: exponential
- Simultaneously for LL & DD

CLHCP	2024
-------	------

	Parameters	Fit Result(DD)	Fit Result(LL)
	$\mu_{\Xi_b^-}$	5798.2±	1.0 MeV
$\sigma_{\Xi_b^-}$		12.5±1	.0 MeV
•.	signal yield	139±16	93±10
/ersitv 🗖			

Run2, $\Xi_b^- \to \Xi_c^{**0} \pi^-$ channel

Best fit projections: $J_{\Xi_{c}^{**}(3055)}^{P} = 3/2^{+}$

ed candidates / (5 MeV/ c^2)	$\begin{array}{c} 60 \\ 50 \\ 50 \\ J_{\Xi_c(3)}^{P} \\ 40 \\ 30 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$pp \sqrt{s}=13 \text{ TeV}$ $pp \sqrt{s}=13 \text{ TeV}$ $pp \sqrt{s}=13 \text{ TeV}$ $p \text{ Data}$ $Full = 100 \text{ Full}$ $C = 100 \text{ Full}$ $C = 100 \text{ Full}$	$, 5.4 \text{ fb}^{-1}$ $, 5.4 \text{ fb}^{-1}$ $, 5.4 \text{ fb}^{-1}$ $, 50$ $, 40$ $, 50$ $, 40$ $, 50$ $, 4$	LHCb $pp \sqrt{s}=13 \text{ TeV}, 5.4 \text{ fb}^{-1}$	45 LH0 40 35 30 25 20 15 10 9_{2^+}	Cb $pp \sqrt{s}=13 \text{ TeV}, 5.4 \text{ fb}^{-1}$ $\downarrow \qquad \qquad$	$50 = LHCb \qquad pp \sqrt{s}=13$ $40 =$	TeV, 5.4 fb ⁻¹ 0.5 $\cos \beta_{\Lambda}^{1}$
ghte					-	JP hypotheses	significance	<u> </u>
Nei	3000	3050 3100	3150 m [mey]			3/2 +	-	
			m _{DA} [mev]		-	1/2 -	5.5 <i>o</i>	_
						1/2 +	6.5 <i>0</i>	
	Table 1	: Measured $\Xi_c^{**}(305)$	5) properties			3/2 -	3.5σ	
		μ_0 [MeV]	Γ_0 [MeV]	$\alpha_{\Xi_h \to \Xi_c^{**} \pi}$		5/2 —	4.8σ	
		3061.00 ± 0.80	12.4 ± 2.0	-0.92 ± 0.16		5/2 +	4.8σ	
		5001.00 <u>-</u> 0.00	12.7 <u>1</u> 2.0	0.92 <u>-</u> 0.10		7/2 —	6.0σ	
	CLHCP	2024		Guanyue Wan, Peking Ur	iversity	7/2 +	6.2σ	

Systematics

Source	$\sigma_m [{ m MeV}/c^2]$	$\sigma_{\Gamma}[\text{MeV}/c^2]$	σ_{lpha}	$\sigma_{R_{\mathcal{B}}}$
Amplitude fit bias	—	-0.46	—	_
Hadron masses	± 0.05	—	—	—
Momentum scale	± 0.03	—	—	—
Resolution	± 0.00	± 0.10	± 0.00	± 0.001
Simulation sample	± 0.13	± 0.38	± 0.02	± 0.006
Trigger correction	± 0.01	± 0.03	± 0.00	± 0.001
Λ categories	± 0.04	± 0.12	± 0.05	± 0.004
Ξ_b^- mass fit model	± 0.00	± 0.19	± 0.02	± 0.003
Angular momentum	± 0.01	± 0.15	± 0.21	± 0.014
Nonresonant model	± 0.00	± 0.03	± 0.00	± 0.001
$\Xi_c(3080)^0$ width	± 0.08	± 0.69	± 0.01	± 0.032
$\Xi_c(3080)^0$ mass	± 0.03	± 0.20	± 0.01	± 0.006
Clone tracks	± 0.13	± 0.04	± 0.04	± 0.008
Total	± 0.23	± 1.11	± 0.22	± 0.038

Table 4: Biases and systematic uncertainties for the $\Xi_b^- \to \Xi_c(3055)^0 \pi^-$ channel.

Decay Parameter

> Decay parameter:

 $\alpha = \frac{2|S||P|cos(\delta \pm \phi)}{|S|^2 + |P|^2}$

• Relative transition possibility between up & down parity

Backup

Toy study

- 1. Construct model $f(m_{D\Lambda}, \vec{\Omega}; \vec{\nu}', J_{dis}^P)$ for disfavored $J_{dis}^P = 1/2^{\pm}, 3/2^{-}, 5/2^{\pm}, 7/2^{\pm}$
 - Parameters \vec{v}' are optimized from hypothesized fit
- 2. Sampling component from PDF= $f(m_{D\Lambda\pi}; \vec{v}_{\Xi_b}) \times \epsilon_i(m_{D\Lambda\pi}) \times f(m_{D\Lambda}, \vec{\Omega}; \vec{v}_{\Xi_c}', J_{dis}^P) \times \epsilon_i(m_{D\Lambda}, \vec{\Omega})$
 - Variable space: $m_{D\Lambda\pi}$, $m_{D\Lambda}$, $\vec{\Omega}(\cos\theta,\cos\beta,\phi)$
 - Poisson randomized entries
 - Efficiency from MC (Legendre expansion)
- 3. sFit with disfavored model (J_{dis}^P) , and favored model $(J_{fav}^P = 3/2^+)$

34

Fig 1: MC efficiency expansion of $\cos \theta$

LHCb approval

Components : partial reconstruction

• $\Xi_b \to D\Sigma^0 (\to \Lambda^0 \gamma) \pi^-$ samples generated with RapidSim , invariant mass of

 $D\Lambda^0\pi^-$ (Ξ_b with a γ lost) calculated

• Influence of preselection neglectable

Particles	Preselection
π	ProbNNpi > 0.1
K	ProbNNk > 0.2
$m(\Lambda)$	PDG value \pm 6MeV
$m(\Xi_{\rm b})$	PDG value \pm 700MeV
<i>m</i> (D)	PDG value \pm 20MeV

Resolution

• Resolution of Ξ_c^{**} evaluated with MC samples :

Fit $(M_{True} - M_{Reconstruction})$ in each m(DA) bin with :

 $f \times Gaussian_1 + (1 - f)Gaussian_2$

- Choose constant width 1.3MeV
- Convolute to PDF

MC distribution reweighting

The simulated Ξ_c^{**} in MC were modified from $\Xi_c^{\sim}(2815)$ and $\Xi_c^{+}(2790)$, (D^0/D^+ channels, respectively) with different mean values and large widths.

In correction of $m(D\Lambda)$ distribution, MC samples were reweighted to BW distribution from data fit results

 $\Xi_c^{**+}(2790)$ has spin 3/2 in simulation (with orbital angular momentum l = 1 in its decay to $D^+\Lambda^0$)

Charm WG Meeting

MC correction : PT_Y reweighting

MC correction : nTracks reweighting

hweight_nTracks

Trigger Efficiency

- MC errors in L0 trigger efficiency for :
 - ➤ TIS : L0_Photon | Electron | Muon | DiMuon_TIS
 - Calibrated using TISTOS method
 - ➤ TOS : L0_Hadron_TOS
 - Calibrated using E_T dependent data driven L0 efficiency for each trach

TIS Efficiency Calibration

• TIS efficiency as a function of Ξ_b transverse momentum:

 $\epsilon_{TIS} = \frac{N_{TIS\&TOS}(p_T)}{N_{TOS}(p_T)}$

- Evaluated for data and MC in each p_T bins
- MC corrected according to differences

 \succ Data efficiency is evaluated with $\Xi_b \rightarrow \Xi_c \pi^-$ decay, with larger statistics

TIS Efficiency : Efficiency distributions

TOS Efficiency Calibration

- L0 TOS efficiency is tabulated with respect to E_T of final tracks
- Fitting variables distribution in two MC samples are compared:
 - > Cut with L0_Hadron_TOS decision
 - > Weighted with L0 efficiency table
- The first sample is calibrated to the second sample
 - > With GBReweighter method
 - \succ Concerning fitting variables $m(D\Lambda)$, $\cos \theta$, $\cos \beta$ and α
- Events triggered with TIS/TOS are separately weighted

Selection Bias

- Effects of Pre-selection & MVA :
 - ➤ Evaluated with MC

► Distribution of $\Delta M = M_{\text{reconstruction},\Xi_c} - M_{\text{true},\Xi_c}$ is fitted

- $\succ \mu$ evaluated for samples before and after selection
- $\succ \Delta \mu$ taken as bias, all within $\pm 0.001 MeV$

Dataset	$\mu_1[\text{MeV}/c^2]$	$\mu_2[\text{MeV}/c^2]$	Correlation	$\Delta \mu [\text{MeV}/c^2]$
$\Xi_b^0 \to D^+ \Lambda \pi^-, \mathrm{DD}$	0.067 ± 0.007	0.065 ± 0.006	0.81	-0.001 ± 0.004
$\Xi_b^0 \to D^+ \Lambda \pi^-, \mathrm{LL}$	0.064 ± 0.012	0.064 ± 0.011	0.79	0.000 ± 0.007
$\Xi_b^- \to D^0 \Lambda \pi^-, \mathrm{DD}$	0.059 ± 0.006	0.059 ± 0.006	0.71	0.000 ± 0.003
$\Xi_b^- \to D^0 \Lambda \pi^-, \mathrm{LL}$	0.063 ± 0.007	0.064 ± 0.006	0.84	0.001 ± 0.003

Selection Bias : Figures

PDG Bias & Uncertainty

- *DecayTreeFitter* constrained D, Λ masses to known values in LHCb database
- ➢ Differences with PDG :

$$\Delta \mu = \sum_{D,\Lambda,\pi} (m_{PDG} - m_{LHCb})$$

> Uncertainties :

$$\sigma_{\mu_0} = \sqrt{\sum_{D,\Lambda,\pi} |\sigma_{PDG}|^2}$$

Overall bias +0.04MeV(-0.02MeV), uncertainty $\pm 0.05MeV(\pm 0.05MeV)$ for $\Xi_c^{**+}(\Xi_c^{**0})$

Particle	PDG [MeV]	LHCb [MeV]	Particle	PDG [MeV]	LHCb [MeV]
Λ	1115.683 ± 0.006	1115.683	D^+	1869.66 ± 0.05	1869.62
D^0	1864.84 ± 0.05	1864.86	π^{-}	139.57039 ± 0.00018	139.57018

Momentum Scale

- Track momenta have been calibrated (MS)
 - With precision 0.03%
- Evaluated by varying calibration by $\pm 0.03\%$
 - Event-by-event mass difference is fitted (with triple Gaussian)
 - Maximum taken as uncertainties

Channel	MS varied by $+0.0003$	MS varied by -0.0003
$\Xi_b^0 \to \Xi_c^{+} \pi^{-}$	$0.008{ m MeV}$	$-0.009\mathrm{MeV}$
$\Xi_b^- o \Xi_c^{\ 0} \pi^-$	$0.026\mathrm{MeV}$	$-0.024\mathrm{MeV}$

(d) -0.0003 scaled, $\Xi_b^- \to D^0 \Lambda \pi^-$ channel

Resolution Uncertainty

- Vary within $\mu_0 \pm \Gamma \ 1.25 MeV \sim 1.40 MeV$ then average between LL and DD
- Maximum differences taken as uncertainties

Tab.4 $\Xi_b^0 \to \Xi_c^{**+} \pi^-$ channel

Convoluted Resolution	$\Delta \mu_0$ [MeV]	ΔΓ[MeV]
Larger (1.40 <i>MeV</i>)	< 0.01	± 0.08
Smaller (1.25 <i>MeV</i>)	< 0.01	± 0.04

Tab.5 $\Xi_b^- \to \Xi_c^{**0} \pi^-$ channel

Convoluted Resolution	$\Delta \mu_0$ [MeV]	$\Delta\Gamma[MeV]$
Larger (1.40 <i>MeV</i>)	< 0.01	± 0.04
Smaller (1.25 <i>MeV</i>)	<0.01	±0.01

MC Fluctuation

- MC integral over phase-space to implement signal efficiency
- Limited statistics in MC will introduce uncertainty to fit results
- Using bootstrap toy MC method

Tab.6 MC fluctuation uncertainties

Uncertainties	$\Delta \mu_0$ [MeV]	$\Delta\Gamma[MeV]$	$\Delta lpha$
$\Xi_b^0 \to \Xi_c^{**+} \pi^-$ channel	± 0.11	<u>±0.3</u>	± 0.04
$\Xi_b^- \to \Xi_c^{**0} \pi^-$ channel	± 0.10	± 0.5	± 0.02

LL/DD Differences

- In default fit, LL&DD samples are merged
- LL and DD samples are fitted simultaneously

Tab.10 LL/DD uncertainties

Uncertainties	$\Delta \mu_0$ [MeV]	$\Delta\Gamma[MeV]$
$\Xi_b^0 \to \Xi_c^{**+} \pi^-$ channel	± 0.01	± 0.02
$\Xi_b^- \to \Xi_c^{**0} \pi^-$ channel	± 0.03	± 0.05

Contribution of $\Xi_c(3080)$

 $\begin{array}{l} \rho \text{ modes: } l \neq 0 \\ \lambda \text{ modes: } L \neq 0 \end{array}$

- The $\Xi_c(3080)^{+/0}$ components are introduced to the amplitude model.
- $\Xi_c(3080)^{+/0}$ assumed to have $J = l_{\lambda} + s_c$, with $J = l_{\lambda} s_c$ for $\Xi_c(3055)^{+/0}$
- With $l_{\lambda} = 2$, the J^P is fixed to $5/2^+$

Uncertainties of sWeights

- Uncertainty in Ξ_b mass fit can be introduced to amplitude fit
- Three variations of the $m(\Xi_b)$ fit models are checked:
 - \succ Extra component of $\Xi_b^- \to D^{*0} (\to D^0 \gamma) \Lambda^0 \pi^-$ partial reconstruction
 - ➤ Signal model :

 $Gauss + DSCB \rightarrow Gauss_1 + Gauss_2$

➢ Background model :

Exponential \rightarrow 2nd order Chebychev polynomial

Charm WG Meeting

LS couplings

- Possible orbital angular momentums in $\Xi_b \to \Xi_c \pi$ weak decay.
- Only lower state considered in default model
- Alternative l s couplings are considered, with l expanded:

$$\begin{split} H^{A \to B+C}_{\lambda_B, \lambda_C} q^{l_{\min}} B_{l_{\min}}(q, q_0, d) \to \sum_{ls} g_{ls} \sqrt{\frac{2l+1}{2J_A+1}} \left\langle l0; s\delta | J_A \delta \right\rangle \left\langle J_B \lambda_B; J_C - \lambda_C | s\delta \right\rangle q^l B_l(q, q_0, d) \\ \\ = \sum_{l=\frac{1}{2}+J_{\Xi_c}, J_{\Xi_c}-\frac{1}{2}} g_{l,s=J_{\Xi_c}} \sqrt{\frac{2l+1}{2}} \left\langle l0; J_{\Xi_c} \lambda_{\Xi_c} | \frac{1}{2} \lambda_{\Xi_c} \right\rangle q^l B_l(q, q_0, d) \end{split}$$