Amplitude analysis of $D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$ decay

Linxuan Zhu

on behalf of LHCb collaboration

11/11/24

$D_{s1}^*(2317)^+$ and $D_{s1}(2460)^+$

- 20 year-long puzzle
 - Heavy-light quark system? Phys. Rev. D 68, 054024
 - Tetraquark? Phys. Lett. B 566, 193 (2003)
 - Hadronic molecule? Phys. Rev. D 68, 054006
- Width very narrow, low mass
 - Isospin-violating decay: $D_s^{(*)}\pi^0$
 - Isospin-allowed decay occurs at sizable rate: $D_s^+\pi^+\pi^-$ (4.3 ± 1.3)%
- Not clear whether there exists I = 1 state for $D_{s0}^{*}(2317)^{+}$
- Double-bump structure in $m(\pi^+\pi^-)$ if $D_{s1}(2460)^+$ is a D^*K hadronic molecule
 - Commun. Theor. Phys. 75 (2023) 055203
- The multiplet including $T_{c\bar{s}}(2900)^{++}$, $T_{c\bar{s}}(2900)^{0}$ and $T_{cs}(2900)^{0}$ could be the radial excitation of a lighter multiplet containing the $D_{s0}^{*}(2317)^{+}$ state
 - Phys. Rev. D 110, 034014

$D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^- \text{ in } B \text{ decays}$

- LHCb data 9.0 fb^{-1}
- $B^0 \to D^- D_{s1}(2460)^+, B^+ \to \overline{D}{}^0 D_{s1}(2460)^+, \text{ and } B^0 \to D^{*-} D_{s1}(2460)^+$
- Clear $D_{s1}(2460)^+$ signal, small contribution from $D_{s1}(2536)^+$
- High purity

Data distribution

- Data clusters in three phsp regions
 - Double-peak in $m(\pi^+\pi^-)$
 - Concave structure in $m(D_s^+\pi)$
- Amplitude fit
 - Simultaneous fit among three channels
 - Four additional parameters for $B^0 \rightarrow D^{*-}D_{s1}(2460)^+$
 - Isobar approach
 - TF-PWA software <u>link</u>

Amplitude fit method

- cfit method
- Model signal and background contribution (extract distribution from candidates in sideband region)

•
$$-\ln \mathcal{L} = -\sum_{i \in \text{data}} \ln [f_{\text{sig}} \mathcal{P}_{\text{sig}}(\xi_{i}; \Lambda) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(\xi_{i}; \Lambda)]$$

• $\mathcal{P}_{\text{sig}}(\xi_{i}; \Lambda) = \frac{|A(\xi_{i}; \Lambda)|^{2}}{\int |A(\xi_{i}; \Lambda)|^{2} \varepsilon(\xi) d\xi}$

• Fit fraction

•
$$F_{i} = \frac{\int |A_{i}(\xi;\widehat{\Lambda})|^{2} d\xi}{\int |\sum_{k} A_{k}(\xi;\widehat{\Lambda})|^{2} d\xi}$$

•
$$F_{ij} = \frac{\int 2\mathcal{R}e\{A_{i}A_{j}^{*}(\xi;\widehat{\Lambda})\}d\xi}{\int |\sum_{k} A_{k}(\xi;\widehat{\Lambda})|^{2} d\xi}$$

Naïve models

- Model $f_0(500) + f_0(980)$ and $\pi\pi$ K-matrix model cannot describe well
 - Especially the data with $m(\pi\pi) > 390 \text{ MeV}$
- The model in paper <u>Commun. Theor. Phys. 75 055203</u> cannot describe the data well either

- Red: Hadronic molecule
- Blue: Compact tetraquark

Two models describing data well

Elastic *DK*

 $K = \begin{pmatrix} \gamma \\ \beta \end{pmatrix}$

- One w/o exotic contribution
 - $f_0(500) + f_0(980) + f_2(1270)$
 - $f_0(500)$: relativistic Breit-Wigner (RBW)
 - $f_0(980)$: Flatte model
 - $f_2(1270)$: RBW w/ mass and width fixed

- One w/ exotic contribution
 - $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$
 - $T_{c\bar{s}}$ tested with two models
 - RBW
 - K-matrix (scattering length approxmation)
 - Describes the rescattering between $D_s\pi$ and DK channel
 - Natural parametrisation of the DK molecular state
 - Lineshae
- Fixed to 0 in the $\frac{\beta^2 \rho_{DK} + i\gamma_2 (i\gamma \rho_{DK} 1)}{\beta^2 \rho_{DK} \rho_{D_S \pi} + (i\gamma \rho_{DK} 1) (i\gamma_2 \rho_{D_S \pi} 1)}$
 - Scattering length

•
$$a = \frac{1}{8\pi\sqrt{s_{\rm thr}}} \left(\gamma + i\beta^2 \rho_{D_s\pi}(s_{\rm thr}) \right)$$

 ρ contribution is not significant in both models nominal fit

11/11/24

 $DK \leftrightarrow D_s \pi$

Elastic $D_s\pi$

Model $f_0(500) + f_0(980) + f_2(1270)$

- The large contribution from $f_0(980)$ and $f_2(1270)$
- The large interference between $f_0(500)$ and $f_0(980)$ forming the double bump lineshape in $m(\pi\pi)$
- The mass and width of $f_0(500)$ are different from the known values

Resonance	Mass (MeV)	Width (MeV)	FF (%)
$f_0(500)$	$376 \pm 9 \pm 16$	$175 \pm 23 \pm 16$	$197 \pm 35 \pm 23$
$f_0(980)$	945.5	167	$187 \pm 38 \pm 43$
$f_2(1270)$	1275.4	186.6	$29 \pm 2 \pm 1$

Model $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$

- Isospin symmetry constraint is applied
- Pole mass just below DK threshold
- $a = -0.86(\pm 0.07) + 0.44(\pm 0.07)i$ fm
- Isospin symmetry is conserved
- Consistent results obtained w/ RBW and Kmatrix model except for the width
- Assign large systematic uncertainty for the width

Resonance	Mass (MeV)	Width (MeV)	FF (%)]
$f_0(500)$	$474 \pm 30 \pm 18$	$224 \pm 23 \pm 16$	$248^{+40}_{-54} \pm 39$	
$T_{c\bar{s}}$	$2327 \pm 13 \pm 13$	$96 \pm 16^{+170}_{-23}$	$156^{+27}_{-38} \pm 25$]

11/11/24

Model $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$

ndidates / (0.008 GeV) Isospin symmetry constraint is applied LHCb LHCb 9 fb⁻ $9 \, \mathrm{fb}^{-1}$ (b)(a)• Pole mass just below *DK* threshold • $a = -0.86(\pm 0.07) + 0.44(\pm 0.07)i$ fm Isospin symmetry is conserved • Consistent results obtained w/ RBW 2.30 2.10 2.25 LHCb 0.35 0.45 0.50 2.15 2.200.40 $m(D_s^+\pi^+)$ [GeV] $m(\pi^+\pi^-)$ [GeV] 9 fb $^{-1}$ matrix model except for the width Candidates / (0.008 GeV) $m(\pi^+\pi^-) > 0.39 \text{ GeV}$ LHCb • Assign large systematic uncertainty $T_{c\bar{s}}^{++}$ $9 \, {\rm fb}^{-1}$ $T_{c\bar{s}}^0$ $f_0(500)$ **RBW** uncertainty Start point (2.108 GeV) of RBW Background K-matrix uncertainty Total fit Start point (2.108 GeV) of K-matrix Mass (MeV) Width (Me' Resonance Data $f_0(500)$ $474 \pm 30 \pm 18$ 224 ± 23 $\Re e\{A\}$ 2.30 2.102.15 2.20 2.25 $m(D_s^+\pi^+)$ [GeV] $2327 \pm 13 \pm 13$ $96 \pm 16^{+170}_{-23}$ $156^{+27}_{-38} \pm 25$ $T_{c\bar{s}}$

11/11/24

Model $f_0(500) + T_{c\bar{s}}^{++} + T_{c\bar{s}}^0$

- Generate pseudoexperiments to estimate the significance
- Significance over $f_0(500) + f_0(980)$ model is larger than 10 σ
- J^P favours 0^+

Some discussion

- Systematics is dominated by Blatt-Weisskopf factor and model variation
- Large interference is inevitable since narrow phase space
- Two models could describe the data well
- The first one only with $R(\pi\pi)$ contribution
 - Large contribution from $f_0(980)$ and $f_2(1270)$, their poles far away from the upper limit of $m(\pi\pi)$, 4 times of their widths
 - The mass and width for $f_0(500)$ not consistent with PDG
 - We cannot fully reject this model, but we find it implausible.
- The second one with exotic charm meson contribution
 - $T_{c\bar{s}}^{++}$ and its isopin partner $T_{c\bar{s}}^{0}$

Summary

- An amplitude analysis of the isospin-conserving decay $D_{s1}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$ is performed simultaneously in *B* hadronic channels for the first time
- An interesting double-peak structure is seen in $m(\pi\pi)$
 - Two models could describe the data well
 - The first one is physically implausible The poles for $f_0(980)$ and $f_2(1270)$ are far away from the upper kinematic boundary of $m(\pi\pi)$
 - The second one introduces two new tetraquark states: mass 2327 \pm 13 \pm 13 MeV, width 96 \pm 16^{+170}_{-23} MeV
- This analysis sheds new light on this longstanding puzzles for $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$, also complement those obtained on other T_{cs} and $T_{c\bar{s}}$ hadrons

Backup slides

Kinematics of $B \rightarrow \overline{D}^{(*)}D_{s1}(2460)^+$

- $B \to \overline{D}D_{s1}(2460)^+$ • $m(\pi^+\pi^-), m(D_s^+\pi^+)$
 - $m(\pi'\pi), m(D'_s\pi)$
 - $\cos \theta_1$, ϕ_1
- $B^0 \to D^{*-}D_{s1}(2460)^+$
 - $m(\pi^+\pi^-), m(D_s^+\pi^+)$
 - $\cos \theta_1$, ϕ_1
 - $\cos \theta_0$, ϕ_0

$\pi\pi$ K-matrix model

Total lineshape:
$$f_u = \sum_{\nu=1}^n \left[1 - i\widehat{K}\rho\right]_{u\nu}^{-1} \cdot \widehat{P}_{\nu}$$

Coupling channels: $\pi\pi$, $K\overline{K}$, 4π , $\eta\eta$, and $\eta\eta'$

K-matrix:
$$\widehat{K}_{uv}(s) = \left(\sum_{\alpha=1}^{N} \frac{g_u^{(\alpha)} g_v^{(\alpha)}}{m_{\alpha}^2 - s} + f_{uv}^{\text{scatt}} \frac{m_0^2 - s_0^{\text{scatt}}}{s - s_0^{\text{scatt}}}\right) f_{A_0}(s)$$
 (poles plus slowly varying parts)
Production vector: $\widehat{P}_v(s) = \sum_{\alpha=1}^{N} \frac{\beta_{\alpha} g_v^{(\alpha)}}{m_{\alpha}^2 - s} + f_v^{\text{prod}} \frac{m_0^2 - s_0^{\text{prod}}}{s - s_0^{\text{prod}}}$

PHSP factor

$$\rho_{u} = \sqrt{\left[1 - \frac{(m_{1u} + m_{2u})^{2}}{s}\right] \left[1 - \frac{(m_{1u} - m_{2u})^{2}}{s}\right]}$$
$$\rho_{3} = \frac{\rho_{u}}{1 + \exp^{\frac{2.8 - s}{3.5}}}$$
$$\beta_{\alpha}(\alpha > 1) \text{ and } f_{v}^{\text{prod}}(v > 1) \text{ fixed to } 0$$

Model in paper Commun. Theor. Phys. 75 055203

- Two-dimensional interpolation in $m(\pi\pi) \cos\theta$ (the helicity angle of $R(\pi\pi)$ decay)
- Different line shapes for different helicity for $D_{s1}(2460)^+$

Flatte model

•
$$f_{f_0(980)} = \frac{1}{m_0^2 - s - im_0(g_{\pi\pi}\rho_{\pi\pi} + g_{KK}F_{KK}^2\rho_{KK})}$$

• PHSP factor

•
$$\rho_{\pi\pi} = \frac{2}{3}\sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{s}} + \frac{1}{3}\sqrt{1 - \frac{4m_{\pi^0}^2}{s}}, \rho_{KK} = \frac{1}{2}\sqrt{1 - \frac{4m_{K^{\pm}}^2}{s}} + \frac{1}{2}\sqrt{1 - \frac{4m_{K^0}^2}{s}}$$

Fit goodness

11/11/24

CLHEP

18