

UT commissioning and performance

Mingjie Feng (冯铭婕, IHEP, UCAS) on behalf of the UT Working Group

The 10th China LHC Physics Workshop (CLHCP2024) 13-17, November, Qingdao

LHCb Detector

- Single arm forward spectrometer ($2 < \eta < 5$)
 - Designed to study CP violation and rare decays in hadrons containing b- and c-quarks
- LHCb data-taking phases
 - Run1(2010 2012) and Run2 (2015 2018)
 - Running with luminosity leveling at $4 \times 10^{32} cm^{-2} s^{-1}$
 - Total of $9 f b^{-1}$ (3+6) collected
 - Run3 (2023) LHCb Upgrade
 - Luminosity increased by a factor of $5 \rightarrow \mathcal{L} = 2 \times 10^{33} cm^{-2} s^{-1}$
 - Software-only trigger to 40 MHz readout
 - Sub-detector upgrade
- LHCb Tracking System (all sub-detector upgraded after LS2)
 - Vertex Locator (Velo): Silicon strips \rightarrow Silicon pixel
 - Upstream Tracker (UT): Silicon strips (Tracker Turicensis, TT) \rightarrow Silicon strips
 - Scintillating Fiber Tracker (SciFi): Silicon strips + straw tubes $(IT + OT) \rightarrow$ Scintillating fibers

UT Detector

The Upstream Tracker (UT)

- Replace TT, located upstream of the LHCb bending magnet
- Silicon strip detector with four layers
 - 4 types of modules with different silicon strip densities
 - 4192 ASICs of 128 channels each, with a total of 536,576 strips
- Full angular coverage
- Higher segmentation sensors in the region surrounding the beam pipes
- 40MHz readout with SALT (Silicon ASIC for LHCb Tracker) chip

An important component of LHCb track system

- Provide fast estimates of momentum in the software trigger
- Improve momentum resolution
- Reduce ghost rate in long tracks
- Increase reconstruction efficiency of long lived particles

SALT chip and UT commissioning

UT front-end readout, SALT (Silicon ASIC for LHCb Tracker)

- 128 Channels with 6-bit ADC, 40MHz readout \bullet
- CMOS 130nm technology
- Fast shaping time: Tpeak < 25ns
- Digital signal processing providing pedestal & common mode noise subtraction, zero-suppression

UT Commissioning

- UT was the last detector to be installed in the LHCb, leaving very limited time for commissioning
 - Tune Delay-Locked Loop (DLL) / Phase-Locked Loops (PLL)
 - TrimDAC scan \bullet
 - Pedestals and Mean Common Mode (MCM) thresholds subtraction \bullet
 - Tune Zero Suppression (ZS) threshold
 - Pulse-shape scan \bullet
 - Time alignment \bullet

UT Calibration steps:

Tune DLL/PLL, Scan serializer delay, Tune e-link phase on GBTx, Tune ADC, Tune deserializer, TrimDAC scan, Pedestals, Tune ZS threshold, Tune MCM thresholds, Pulse-shape scan, Gain scan, Run DAQ with random triggers @ 30MHz

data_out

4

Tune DLL

DLL in SALT

- Input frequency 40 MHz \bullet
- Provide 64 independent clock phases selection \bullet

Tune DLL

• The dll_vcdl_voltage means the difference between V_{DLL} and $V_{vdd/2}$

• Best setting when dll_vcdl_voltage around 0

- The dll vcdl cfg register sets the Voltage Controlled Delay Line \bullet (VCDL) bias current
- Adjust dll vcdl cfg since the default settings are not optimal lacksquare

Details for Tune DLL/PLL can be found in Mark Tobin's talk

Tune PLL

PLL in SALT

- Input frequency 40 MHz
- Generates a stable high-frequency (160 MHz) clock signal for the Double Data Rate (DDR) serializer
- Triple Modular redundancy (TMR) design enhances reliability against
 Single Event Upsets (SEUs) Three PLLs in the SALT

Tune PLL

- Check the Voltage Controlled Oscillator (VCO) for all three PLLs
- The pll_vco_voltage means the difference between V_{PLL} and $V_{vdd/2}$
 - Best setting when pll_vco_voltage in all three PLLs are around 0
- The pll_vco_cfg register allows to change the VCO bias current which is directly related to the output frequency

Details for Tune DLL/PLL can be found in <u>Mark Tobin</u>'s talk

TrimDAC scan

Each ASIC channel contains an 8-bit trimming DAC for a precise baseline setting

- Scan the TrimDAC from 0-255 with step of 1. Each step took 100 events
 - the ADC value = $0 \rightarrow$ Baseline DAC

Each ASIC contains 6-bit DAC setting the I_{vcm} for generation of common voltages

• The single common mode voltage setting couldn't cover all cases, TrimDAC scans at 4 different common mode voltages allow almost all channels to be compensated

6-bit DAC setting the reference current I_{vcm}

TrimDAC scan

99.97% channels work properly at the TrimDAC scan stage!

Pedestals subtraction

- Performed after TrimDAC scans
- After TrimDAC calibration the pedestal values close to 0
- Subtraction in each channel

Details for Pedestals subtraction can be found in <u>Wojciech Krupa</u>'s talk

PedestalAverage_UTaU

PedestalAverage_UTbX

80

40

PedestalAverage_UTbV

MCM thresholds subtraction

- Calculate an average value of all channels without a hit and subtract this value from all channels
- MCMS run (after pedestal subtraction and MCMS in the chip)
- Very uniform distribution of CMS noise

Details for Tune MCMS can be found in <u>Wojciech Krupa</u>'s talk

CMSNoiseRMSAverage_UTbV

CMSNoiseRMSAverage_UTaU

CMSNoiseRMSAverage_UTbX

<u>HCb</u>

Tune ZS threshold

Calculation of ZS thresholds based on CMS-noise $z_{s_{th}} = \begin{cases} 5 \cdot \sigma_{ADC}(\text{mcms}) \\ 5 \cdot \sigma_{ADC}(\text{mcms}) + \max(\mu_{ADC}(\text{mcms})) \end{cases}$ if $max(\mu_{ADC}(mcms)) = 0,1$ ZS_th_UTaX

Details for Tune ZS threshold can be found in <u>Wojciech Krupa</u>'s talk

ZS_th_UTaU

ZS_th_UTbV

Pulse scan

Using test pulse to check the whole processing chain in the SALT chip

SALT contains a dedicated internal DLL block to provide 64 independent clock phases selection

We generate test pulse and take data with different clock phase
 (adc_clk_sel)

Most of ASICs have the correct pulse shape

32 (4192 in total) ASICs need to recorrect adc_sync_sel bit setting for -20
 different DLL delays

adc_clk_sel	adc_sync_sel	time shift
0 - 7	1 (falling edge)	$adc_clk_sel \cdot rac{2}{6}$
8 - 39	0 (rising edge)	$adc_clk_sel \cdot rac{2}{6}$
40 - 63	1 (falling edge)	$adc_clk_sel \cdot \frac{2}{6}$

Default setting

Time alignment

ADC

Details for UT fine time alignment can be found in <u>Christos Hadjivasiliou</u>'s talk Time alignment was done using the TAE events produced by the LHC during its 2024 luminosity ramp-up

- Coarse time alignment
 - corresponding bunch crossing ID within the LHC orbit
- Fine time alignment

• Done per DCB (Data Control Boards), it makes sure that all ASICs correctly identify a bunch crossing with its

• Done per module, done by scanning the ADC sampling phase, which adjusting the delay for each ASIC by fitting a known signal shape to the actual detector signals, resulting in precise time synchronization across the detector

Time alignment

Before fine time alignment

Details for UT fine time alignment can be found in Christos Hadjivasiliou

After fine time alignment

	•	. 1	1
11	\mathbf{C}	to	7
u		la	

14

Working in global

The UT is already taking data smoothly at nominal rates with the rest of LHCb Most of the ASICs work properly, and the hit distribution is consistent with expectations!

A typical fill of proton-proton collisions at nominal luminosity

A5 A4 A3 A2 A1 C1 C2 C3 C4 C5 C6 C7 C8

UTbX (Layer3) - ASICS (Run = 308324)

Number of hits in each UT chip

White gray: not occupied slot Gray and dark gray: disabled

Fraction of tracks 0.7 0.4 0.3 0.2 predicted determined 3/4 layers efficiency 2 layers efficiency 0.1 -0.5 1.5 3.5 0 0.5 2 2.5 3 4 4.5 Number of UT layers

Runs 304462 Number of UT layers matched per track

- The determined efficiency of UT layers (3+4) that match the long track ~ 96.9%
- The predicted UT layers (2+3+4) efficiency ~ 99.8%

Summary

- LHCb has completed the upgrade I and currently in the Run3 data-taking phase
 - Luminosity increased by a factor of 5
 - Software-only trigger to 40 MHz readout
 - All sub-detector of LHCb tracking system was upgraded
- The commissioning of UT has completed
 - Improve calibration of detector
 - Test detector in local and global
- The UT is already taking data smoothly with the rest of LHCb

Thank you!

