CMOS R&D for LHCb UT in Upgrade II

Zhiyu Xiang (项治宇) On behalf of COFFEE team

16th November 2024

UT @ Upgrade II

- The future of LHCb, Run5, will evolve into high-luminosity. Increased multiplicity require a finer grained and more radiation-hard Tracker
- For Upstream Tracker (UT), the max hit density is at the inner-most area (5.92 Hits/cm2/BX), or 4.0 averaged over all bunch crossings
 - The occupancy (max \sim 10%) will significantly comprise the performance of UT
- A new UT for the Upgrade II is mandatory: Si-strip \rightarrow Si-pixel

CMOS MAPS as Possible Solutions HV-CMOS

Large collection electrode

- Typical pixel size: $50 \times 100 \mu m^2$
- Circuitry inside the charge collection well
- Large uniform electric field
- On average shorter drift path
- High radiation tolerance (less trapping)
- Very large sensor capacitance (both pw and dnw)

LV-CMOS

Small collection electrode

- Typical pixel size: $30 \times 30 \mu m^2$
- Circuitry outside the charge collection well
- Optimization of little low-field regions
- On average longer drift path
- Radiation hardness needs process modifications
- Very small sensor capacitance

pw

Choice of HVCMOS with 55nm process

- The international mainstream technology is 180/150 nm process. HV-CMOS pixel sensor has been applied to Mu3e experiment
- Chip research and development determined with 55nm process in domestic factory
 - Safety concern: 55nm process should provide stable support for mass production in next 10 years
 - Technological benefits: lower power, higher speed, higher TID...

CMOS sensOr in Fifty-FivE nm procEss (COFFEE)

- COFFEE1 chip $(3 \times 2 \text{mm}^2)$:
 - Similar deep N well
 - pixel size: $25\times 150 \mu {\rm m}^2$
 - Variation of passive diode arrays
 - Simple amplifiers added

- COFFEE2 chip (4 \times 3mm²): (test results shown today)
 - Real validation of the sensor structures with electronics included
 - Variation of passive diode arrays
 - Integral analog amplifier and switch circuit to select certain pixel
 - Discriminator and DAC unit added

NIMA Volume 1069 P169905 (2024)

Typical IV/CV, simulation v.s. test

- TCAD simulation results are confirmed through testing
- Current substrate resistivity $(10\Omega\cdot {
 m cm})$ limits the break down voltage

- Breakdown voltage > 70V, leakage \sim 10pA (mainly edge breakdown)
- At 70V, the capacitance of single pixel due to depletion $\sim 30-50 {
 m fF}$

6/12

Irradiated leakage change

- Tested with proton beam @80MeV in Spallation Neutron Source
- 4 gradient doses were irradiated at room temperature
- Magnitude of leakage current proportional to the irradiation dose

Dose $[n_{eq}/cm^2]$	$3.2 imes10^{11}$	$4.9 imes10^{12}$	$5.7 imes10^{13}$	$1.6 imes10^{14}$
Leakage I [nA]	0.57	0.59	0.65	1.06

Passive pixel signal test

- 54 pixels read out at a time, via external Charge Sensitive Amplifier
- Clear response to both laser ($\lambda \sim 650 \mathrm{nm}$) and α radioactive source

Active pixel matrix

- 32 × 20 active pixel matrix, peripheral modules including bandgap, analogue buffer, DACs and row/column gating
- Vary with CSA + Comparator combination to evaluate the X-talk issue
- Circuit simulation performance
 - CSA: ~140e ENC, gain $\sim 57 \mu V/e$
 - CMOS comparator: Time walk $\sim 2ns;$ Time over threshold $\sim 5\mu s$
 - NMOS comparator: Time walk $\sim 9ns;$ Time over threshold $\sim 5\mu s$

Active pixel matrix test system

PC + ZC706 + Caribou board + specific carrier board

Caribou system architecture

Control and Readout (CaR) board

Feature	Description	
Adjustable Power Supplies	8 units, 0.8 - 3.6 V, 3 A	
Adjustable Voltage References	32 units, 0 – 4 V	
Adjustable Current References	8 units, 0 – 1 mA	
Voltage Inputs to Slow ADC	8 channels, 50 kSPS, 12-bit, 0 - 4 V	
Analog Inputs to Fast ADC	16 channels, 65 MSPS, 14-bit, 0 - 1 V	
Programmable Injection Pulsers	4 units	
Full-Duplex High-Speed GTx Links	8 links, <12 Gbps	
LVDS Links	17 bidirectional links	
Input/Output Links	10 output links, 14 input links, 0.8 - 3.6 V	
Programmable Clock Generator	Included	
External TLU Clock Reference	Included	
External High-Voltage (HV) Input	Included	
FEAST Module Compatibility	Supported	
FMC Interface to FPGA	Included	
SEARAY Interface to Detector Chip	320-pin connector	

Resources for various target applications

20 CaR boards v1.4 produced and distributed within RD50 common project

Active pixel matrix test results

• CSA output calibrated with charge injection. Response curve similar as pre-simulation

 Clear response to laser with low noise. 2000 injections @70V

 Discriminator works well, as shown in green while yellow for amplifier output

• Clear response to ${}^{55}\mathrm{Fe}$ source observed. Charge deposit estimated $\sim 1500e-$ consistent with expectation (1640e-)

Summary & future

- HVCMOS chip in 55nm process has developing for UT@Upgrade II
- Test results for first prototype, COFFEE2 chip, show good diode properties (breakdown> 70V, leakage $\sim 10pA$)
- Promising results from test with laser and radioactive source (α , X-ray). Digital circuit also works well
- Opportunities are being sought for MPW on high resistivity substrate
- COFFEE3 is currently being designed to validate the pixel array readout architecture and fully functional chip