

Spectroscopy of Strange and non-Strange Light Mesons @ LHCb

张黎明 (清华大学)

Outline

- Non-strange light meson spectroscopy
 - Early works on light mesons
 - □ Study of light-meson resonances decaying to $K_S^0 K \pi$ in the $B \to (K_S^0 K \pi) K$ channels [PRD 111 (2025) 092009]
- Strange meson spectroscopy
 - □ Studies of the resonance structure in $D^0 \to K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}$ decays [*Eur. Phys. J. C 78 (2018) 443*]
 - □ Amplitude analysis of $B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$ decays [JHEP 01 (2025) 054]
 - Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$ [*PRL 127 (2021)* 082001]

The precision understanding of the strange and no-strange hadron spectroscopy is important for LHCb in the study of the heavy-flavour exotic states

Light mesons

Conventional mesons as color-singlet $q\bar{q}$ pairs (q = u, d, s) fit into SU(3) flavour multiplets with quantum numbers:

 $J^{PC} = 0^{++}, 0^{-+}, 1^{--}, 1^{+\pm}, 2^{++}, \text{ etc}$

- QCD allows other formations called exotics:
 - Glueballs (pure gluonic states)
 - Hybrids $(q\bar{q}g)$
 - Tetraquarks $(qq\overline{qq} \text{ or } q\overline{q}q\overline{q})$
- Experimental signatures of exotic quantum numbers :

0⁻⁻⁻, 0⁺⁻⁻, 1⁻⁺, 2⁺⁻⁻, 3⁻⁺, etc

Open questions

- Pseudoscalar $\eta(1440)^{1}$
 - Possibly two states $\eta(1405) \& \eta(1475)$
- Difficulty accommodating known light scalars in lower qq nonets ²)
 a₀(980), K^{*}₀(700), f₀(500), f₀(980)
- Three observed isoscalars ²)
 - $\Box f_0(1370/1500/1700)$
 - The latter two proposed as glueball candidates
- The axial-vector meson $f_1(1420)$ has another candidate $f_1(1510)^{4}$

The LHCb Experiment

- LHCb is a dedicated flavour physics experiment at the LHC
 - □ >10⁴ × larger *b* production rate than the B factories @ Y(4S)
 - Access to all *b*-hadrons: B^+ , B^0 , B_s^0 , B_c^+ , *b*-baryons
- Can also study hadron spectroscopy and exotic states
- Acceptance optimised for forward $b\overline{b}$ production

All results based on full or part of run-1 and run-2 datasets

Light-hardon spectroscopy at LHCb

- Amplitude analysis
 - Direct production of light hadrons obviously happens but the multiplicity of tracks is so large that they are covered by large background
 - Rather study resonances in heavy flavored particle decays (D, B_(s)-hadrons)
 - □ B_(s)-decays select pure quark-contents of the light hardon

Non-Strange Mesons

Early works on non-strange light mesons

- □ LHCb, "Resonances and CP violation in B_s^0 and $\overline{B}_s^0 \to J/\psi K^+ K^-$ decays in the mass region above the $\varphi(1020)$ ", *JHEP 08 (2017) 037*.
- □ LHCb, "Measurement of the resonant and CP components in $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decays", <u>*PRD*</u> 90 (2014) 012003</u>.
- □ LHCb, "Measurement of resonant and CP components in $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays", <u>*PRD* 89 (2014) 092006</u>.
- □ LHCb, "Observation of $B_{(s)}^0 \rightarrow J/\psi f_1(1285)$ decays and measurement of the $f_1(1285)$ mixing angle", <u>PRL 112 (2014) 091802</u>.
- □ Sheldon Stone and Liming Zhang, "Use of $B \to J/\psi f_0$ decays to discern the $q\overline{q}$ or tetraquark nature of scalar mesons", <u>*PRL 111 (2013) 062001*</u>.
- □ LHCb, "Amplitude analysis and branching fraction measurement of $B_s^0 \rightarrow J/\psi K^+ K^-$ ", <u>PRD 87 (2013) 072004</u>.
- □ LHCb, "Analysis of the resonant components in $B^0 \rightarrow J/\psi \pi^+ \pi^-$ ", <u>*PRD 87 (2013) 052001*</u>.
- □ Liming Zhang and Sheldon Stone, "Time-dependent Dalitz-plot formalism for $B_q^0 \rightarrow J/\psi h^+ h^-$ ", <u>*PLB 719 (2013) 383-387.*</u>
- □ LHCb, "Analysis of the resonant components in $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ ", <u>*PRD* 86 (2012) 052006</u>.
- □ LHCb, "Observation of $B_s^0 \rightarrow J/\psi f'_2(1525)$ in $J/\psi K^+K^-$ final states", <u>*PRL 108 (2012)151801*</u>.
- □ LHCb, "First observation of $B_s^0 \rightarrow J/\psi f_0(980)$ decays", <u>*PLB 698 (2011) 115-122*</u>.
- □ S. Stone and L. Zhang "S-waves and the measurement of CP violating phases in B_s decays", <u>PRD</u> 79 (2009) 074024.

$R^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ system in $B^+ \rightarrow R^0 K^+$ decays

- The process b → s gluon has been suggested as possible source of gluonium states [H. Fritzsch, PLB 415, 83-89 (1997)]
- However contributions from $s\bar{s}$ and $u\bar{u}$ resonances are expected.

- Pseudoscalar glueball:
 - Phenomenological models: $\approx 1.4 \text{ GeV}$
 - □ Lattice QCD: ≈ 2.5 GeV [J Phys G40 (2013) 043001]
- Mass region (<1.6 GeV) can study:</p>
 - Two overlapping 1^{++} states: $f_1(1420)$ and $f_1(1510)$
 - Two states $\eta(1405) \& \eta(1475)$

$K_S^0 K^{\pm} \pi^{\mp}$ mass spectra

Selection re-optimized in the $K_S^0 K^{\pm} \pi^{\mp}$ threshold region

Final state	Signal Events	Background	Purity
$B^+ \to K^0_S K^+ K^- \pi^+$	10430	1454	87.8 ± 0.3
$B^+ \to K^0_S K^+ K^+ \pi^-$	12320	2180	85.0 ± 0.3

• Event yields for $m(K_S^0 K^{\pm} \pi^{\mp}) < 1.85$ GeV

Complex superposition of resonances in the threshold region

Comparison of two decay modes

• Dalitz plot for the two different B^+ decays for $1.3 < m(K_S^0 K^{\pm} \pi^{\mp}) < 1.85$ GeV

- Asymmetric K^{*+}/K^{*0} distributions
- The Dalitz plots for $B^+ \to (K_S^0 K^- \pi^+) K^+$ and $B^+ \to (K_S^0 K^+ \pi^-) K^+$ are different
- Neutral K^{*0} and charged K^{*+} bands are somewhat inverted

[PRD 111 (2025) 092009]

Ampitude analysis

- Decay chains via $a_0(980)\pi$, $K^*(892)\overline{K}$ and direct $K^0K\pi$
- Resonant parameters are fixed to those from PDG
- Reference amplitude is the $J^{PC} = 0^{-+} \eta(1475) \rightarrow K^* \overline{K}$, parameter fixed to BESIII analysis on $J/\psi \rightarrow \gamma K_S^0 K_S^0 \pi^0$ [JHEP 03 (2023) 121]
- 19 contributions include J^{PC} = 0⁻⁺, 1⁺⁺, 1⁺⁻ and $\eta_2(1645)$

Fit results

		$B^+ \to K$	$K^0_{ m S}K^-\pi^+K^+$	$B^+ \to K$	$G_{\rm S}^0 K^+ \pi^- K^+$
Contribution	Decay	Fraction [%]	Phase [rad]	Fraction [%]	Phase [rad]
$\eta(1475)$	$K^*\overline{K}$	$10.7 \pm 1.1 \pm 1.1$	0	$10.3 \pm 1.1 \pm 1.4$	0
	$a_0\pi$	$1.4\pm0.4\pm0.4$	$3.18 \pm 0.19 \pm 0.15$	$1.8\pm0.4\pm0.4$	$2.92 \pm 0.14 \pm 0.13$
	PS	$15.2 \pm 2.1 \pm 2.1$	$3.33 \pm 0.10 \pm 0.12$	$8.9\pm1.4\pm2.7$	$3.57 \pm 0.11 \pm 0.13$
22	Total	$27.4 \pm 2.4 \pm 2.4$		$21.0\pm1.8\pm3.1$	-
$\eta(1760)$	$K^*\overline{K}$	$1.9\pm0.4\pm0.3$	$-1.53 \pm 0.16 \pm 0.28$	$3.1\pm0.4\pm0.5$	$-1.16 \pm 0.13 \pm 0.20$
	$a_0\pi$	$2.0\pm0.4\pm0.3$	$2.11 \pm 0.15 \pm 0.20$	$1.7\pm0.4\pm0.3$	$3.06 \pm 0.12 \pm 0.24$
	PS	$11.9 \pm 1.8 \pm 2.7$	$1.60 \pm 0.10 \pm 0.19$	$23.2\pm2.4\pm5.1$	$1.92 \pm 0.07 \pm 0.22$
	Total	$15.8 \pm 1.9 \pm 2.7$	_	$27.9 \pm 2.5 \pm 5.1$	P_1
$\eta(1405)$	$K^*\overline{K}$	$3.5\pm0.6\pm1.9$	$-0.10 \pm 0.10 \pm 0.20$	$2.3\pm0.5\pm0.7$	$-0.01 \pm 0.11 \pm 0.18$
	PS	$5.2\pm0.5\pm0.8$	$1.77 \pm 0.11 \pm 0.28$	$6.4\pm0.5\pm0.9$	$1.96 \pm 0.13 \pm 0.20$
3	Total	$8.7\pm0.8\pm2.0$		$8.6\pm0.7\pm1.1$	—
$f_1(1285)$	$a_0\pi$	$2.0\pm0.2\pm0.2$	$-0.35 \pm 0.13 \pm 0.26$	$2.0\pm0.2\pm0.2$	$-0.47 \pm 0.11 \pm 0.12$
$f_1(1420)$	$K^*\overline{K}$	$11.4\pm0.7\pm2.1$	$4.25 \pm 0.08 \pm 0.23$	$6.6\pm0.5\pm1.7$	$4.67 \pm 0.10 \pm 0.27$
$h_1(1415)$	$K^*\overline{K}[S]$	$10.0\pm0.9\pm2.0$	$4.59 \pm 0.08 \pm 0.20$	$18.6\pm1.2\pm3.5$	$1.57 \pm 0.08 \pm 0.55$
	$K^*\overline{K}[D]$	$3.3\pm0.3\pm0.2$	$-0.13 \pm 0.08 \pm 0.16$	$2.4\pm0.3\pm0.2$	$-2.57 \pm 0.08 \pm 0.42$
	Total	$13.3 \pm 1.0 \pm 2.0$	_	$21.0 \pm 1.2 \pm 3.6$	_
$f_1(1510)$	$K^*\overline{K}$	$2.9\pm0.4\pm1.2$	$-3.23 \pm 0.09 \pm 0.47$	$2.6\pm0.3\pm2.7$	$-2.88 \pm 0.09 \pm 0.23$
$h_1(1595)$	$K^*\overline{K}[S]$	$5.3\pm0.8\pm1.4$	$1.44 \pm 0.08 \pm 0.19$	$14.8\pm1.4\pm2.8$	$4.20 \pm 0.06 \pm 0.48$
$\eta_2(1645)$	$K^*\overline{K}$	$1.6\pm0.2\pm0.8$	$2.28 \pm 0.10 \pm 0.09$	$0.8\pm0.2\pm0.2$	$2.15 \pm 0.12 \pm 0.09$
PS		$18.2\pm2.4\pm2.9$	$3.13 \pm 0.09 \pm 0.15$	$25.1 \pm 2.6 \pm 5.0$	$2.85 \pm 0.07 \pm 0.16$
$K_{ m ne}^*$		$3.2\pm0.4\pm0.3$	$-0.87 \pm 0.08 \pm 0.22$	$2.0\pm0.3\pm0.3$	$-1.36 \pm 0.08 \pm 0.16$
$K_{ m ch}^*$		$8.4\pm0.7\pm0.9$	$-0.86 \pm 0.07 \pm 0.19$	$2.8\pm0.4\pm1.0$	$-0.82 \pm 0.07 \pm 0.10$
Sum		$118.0 \pm 4.3 \pm 6.2$	100	$135.5 \pm 4.6 \pm 9.7$	(- 1)

For the two channels

- $J^{PC} = 0^{-+}, 1^{++} K^* K$ contributions are in similar phase.
- $J^{PC} = 1^{+-} K^* K$ contributions are shifted by $\approx \pi$
- These phase differences are responsible for the observed "inversion" of the Dalitz plots

Partial waves contributions

- Significant 0^{-+} signal has been established, comprising $\eta(1405)$, $\eta(1475)$ and $\eta(1760)$.
- The concurrent observation of these states in both J/ψ radiative decays [BESIII, JHEP 03 (2023) 121] and B^+ decays implies potential commonalities in their production mechanisms.
- Presence of $f_1(1420)$ and $f_1(1510)$, both with I = 0, $J^{PC} = 1^{++}$ challenges their physical interpretation, as they both compete for identification as the $s\bar{s}$ member of the axial-vector nonet

Strange Mesons

7,8 TeV; 3 fb⁻¹

Poor known higher K* resonances

Prediction [Godfrey-Isgur model] Confirmed Not-confirmed

• Strategy:

Purity sample selected with double tag

 $B^0 \rightarrow D^{*+} \mu^- \bar{\nu}_{\mu}$ where $D^{*+} \rightarrow D^0 \pi^+$

$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ AmAn results

	Fit Fraction [%]	g	$\arg(g)[^o]$
$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=0}$	$7.34 \pm 0.08 \pm 0.47$	$0.196 \pm 0.001 \pm 0.015$	$-22.4 \pm 0.4 \pm 1.6$
$\left[\overline{K^*(892)^0}\rho(770)^0\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$	$0.362 \pm 0.002 \pm 0.010$	$-102.9 \pm 0.4 \pm 1.7$
$\left[\overline{K^*(892)^0}\rho(770)^0\right]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$		
$\left[\rho(1450)^0 \overline{K^*}(892)^0\right]^{L=0}$	$0.61 \pm 0.04 \pm 0.17$	$0.162 \pm 0.005 \pm 0.025$	$-86.1 \pm 1.9 \pm 4.3$
$\left[\rho(1450)^0 \overline{K^*}(892)^0\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$	$0.643 \pm 0.006 \pm 0.058$	$97.3 \pm 0.5 \pm 2.8$
$\left[\rho(1450)^0 \overline{K^*}(892)^0\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$	$0.649 \pm 0.021 \pm 0.105$	$-15.6 \pm 2.0 \pm 4.1$
$\rho(770)^0 \left[K^- \pi^+\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$	$0.338 \pm 0.006 \pm 0.011$	$73.0 \pm 0.8 \pm 4.0$
$\alpha_{3/2}$		$1.073 \pm 0.008 \pm 0.021$	$-130.9 \pm 0.5 \pm 1.8$
$\overline{K}^{*}(892)^{0} \left[\pi^{+}\pi^{-}\right]^{L=0}$	$2.35 \pm 0.09 \pm 0.33$		
$f_{\pi\pi}$		$0.261 \pm 0.005 \pm 0.024$	$-149.0 \pm 0.9 \pm 2.7$
β_1		$0.305 \pm 0.011 \pm 0.046$	$65.6 \pm 1.5 \pm 4.0$
$a_1(1260)^+K^-$	$38.07 \pm 0.24 \pm 1.38$	$0.813 \pm 0.006 \pm 0.025$	$-149.2 \pm 0.5 \pm 3.1$
$K_1(1270)^-\pi^+$	$4.66 \pm 0.05 \pm 0.39$	$0.362 \pm 0.004 \pm 0.015$	$114.2 \pm 0.8 \pm 3.6$
$K_1(1400)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$1.15 \pm 0.04 \pm 0.20$	$0.127 \pm 0.002 \pm 0.011$	$-169.8 \pm 1.1 \pm 5.9$
$K_2^*(1430)^- \left[\overline{K^*}(892)^0\pi^-\right]\pi^+$	$0.46 \pm 0.01 \pm 0.03$	$0.302 \pm 0.004 \pm 0.011$	$-77.7 \pm 0.7 \pm 2.1$
$K(1460)^{-}\pi^{+}$	$3.75 \pm 0.10 \pm 0.37$	$0.122 \pm 0.002 \pm 0.012$	$172.7 \pm 2.2 \pm 8.2$
$[K^{-}\pi^{+}]^{L=0} [\pi^{+}\pi^{-}]^{L=0}$	$22.04 \pm 0.28 \pm 2.09$		
$\alpha_{3/2}$		$0.870 \pm 0.010 \pm 0.030$	$-149.2 \pm 0.7 \pm 3.5$
$\alpha_{K\eta'}$		$2.614 \pm 0.141 \pm 0.281$	$-19.1 \pm 2.4 \pm 12.0$
β_1		$0.554 \pm 0.009 \pm 0.053$	$35.3 \pm 0.7 \pm 1.6$
$f_{\pi\pi}$		$0.082 \pm 0.001 \pm 0.008$	$-147.0 \pm 0.7 \pm 2.2$
Sum of Fit Fractions	$98.29 \pm 0.37 \pm 0.84$		
χ^2/ν	40483/32701 = 1.238		

Strange resonances in $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$

• $K_1(1270)^-$

$K_1(1270)^ m_0 = 1289.81 \pm 0.56 \pm 1.66 \mathrm{MeV}/c^2; \Gamma_0 = 116.11 \pm 1.65 \pm 2.96 \mathrm{MeV}/c^2$							
	Partial Fractions [%]	g	$\arg(g)[^{\mathrm{o}}]$				
$\rho(770)^{0}K^{-}$	$96.30 \pm 1.64 \pm 6.61$						
$\rho(1450)^0 K^-$	$49.09 \pm 1.58 \pm 11.54$	$2.016 \pm 0.026 \pm 0.211$	$-119.5 \pm 0.9 \pm 2.3$				
$\overline{K}^{*}(892)^{0}\pi^{-}$	$27.08 \pm 0.64 \pm 2.82$	$0.388 \pm 0.007 \pm 0.033$	$-172.6 \pm 1.1 \pm 6.0$				
$[K^{-}\pi^{+}]^{L=0}\pi^{-}$	$22.90 \pm 0.72 \pm 1.89$	$0.554 \pm 0.010 \pm 0.037$	$53.2 \pm 1.1 \pm 1.9$				
$\left[\overline{K}^{*}(892)^{0}\pi^{-}\right]^{L=2}$	$3.47 \pm 0.17 \pm 0.31$	$0.769 \pm 0.021 \pm 0.048$	$-19.3 \pm 1.6 \pm 6.7$				
$\omega(782) [\pi^+\pi^-] K^-$	$1.65 \pm 0.11 \pm 0.16$	$0.146 \pm 0.005 \pm 0.009$	$9.0\pm2.1\pm5.7$				

■ *K*(1460)[−]

 The presence of this resonance is further justified by the Argand diagram from the Model Independent Partial Wave Analysis

$K(1460)^{-}$ $m_0 =$	$1482.40 \pm 3.58 \pm 15.22$	${\rm MeV}/c^2$; $\Gamma_0 = 335.60 \pm$	$6.20 \pm 8.65 \text{ MeV}/c^2$
	Partial Fractions [%]	g	$\arg(g)[^o]$
$\overline{K}^{*}(892)^{0}\pi^{-}$	$51.39 \pm 1.00 \pm 1.71$		
$[\pi^+\pi^-]^{L=0}K^-$	$31.23 \pm 0.83 \pm 1.78$		
fkk		$1.819 \pm 0.059 \pm 0.189$	$-80.8 \pm 2.2 \pm 6.6$
β_1		$0.813 \pm 0.032 \pm 0.136$	$112.9 \pm 2.6 \pm 9.5$
β_0		$0.315 \pm 0.010 \pm 0.022$	$46.7 \pm 1.9 \pm 3.0$

$D^0 \rightarrow K^+ \pi^- \pi^- \pi^+$ AmAn results

[EPJC 78 (2018) 443]

- 3-body resonances parameters fixed to RS fit
- Largest fraction from $K_1\pi$

	Fit Fraction [%]	g	$\arg(g)[^o]$
$[K^*(892)^0 \rho(770)^0]^{L=0}$	$9.62 \pm 1.58 \pm 1.03$	$0.205 \pm 0.019 \pm 0.010$	$-8.5 \pm 4.7 \pm 4.4$
$[K^*(892)^0 \rho(770)^0]^{L=1}$	$8.42 \pm 0.83 \pm 0.57$	$0.390 \pm 0.029 \pm 0.006$	$-91.4 \pm 4.7 \pm 4.1$
$[K^*(892)^0\rho(770)^0]^{L=2}$	$10.19 \pm 1.03 \pm 0.79$		
$\left[\rho(1450)^0 K^*(892)^0\right]^{L=0}$	$8.16 \pm 1.24 \pm 1.69$	$0.541 \pm 0.042 \pm 0.055$	$-21.8 \pm 6.5 \pm 5.5$
$K_1(1270)^+\pi^-$	$18.15 \pm 1.11 \pm 2.30$	$0.653 \pm 0.040 \pm 0.058$	$-110.7 \pm 5.1 \pm 4.9$
$K_1(1400)^+ [K^*(892)^0\pi^+]\pi^-$	$26.55 \pm 1.97 \pm 2.13$	$0.560 \pm 0.037 \pm 0.031$	$29.8\pm4.2\pm4.6$
$[K^+\pi^-]^{L=0}[\pi^+\pi^-]^{L=0}$	$20.90 \pm 1.30 \pm 1.50$		
$\alpha_{3/2}$		$0.686 \pm 0.043 \pm 0.022$	$-149.4 \pm 4.3 \pm 2.9$
β_1		$0.438 \pm 0.044 \pm 0.030$	$-132.4 \pm 6.5 \pm 3.0$
$f_{\pi\pi}$		$0.050 \pm 0.006 \pm 0.005$	$74.8 \pm 7.5 \pm 5.3$
Sum of Fit Fractions	$101.99 \pm 2.90 \pm 2.85$		
χ^2/ν	350/239 = 1.463		

$B^+ \rightarrow J/\psi \phi K^+$ decays

- 24k B[±] signal and purity 96% in signal window (±15 MeV)
- Dalitz-plot in the signal region shows 4 structures in $J/\psi\phi$ mass and an obvious $J/\psi K^+$ band
- Amplitude analysis is performed to study various resonant contributions

Amplitude results

[PRL 127 (2021) 082001]

- Observed four new tetraquark candidates
- Confirmed previous observed four $X \rightarrow J/\psi\phi$
- Main systemetics from non-well known high-mass K*

Tetraquark	Mass [MeV]	Width [MeV]
$Z_{cs}(4000)^+$	$4003 \pm 6^{+\ 4}_{-14}$	$131\pm15\pm26$
$Z_{cs}(4200)^+$	$4216 \pm 24^{+43}_{-30}$	$233 \pm 52^{+97}_{-73}$
X(4630)	$4626 \pm 16^{+18}_{-110}$	${\bf 174 \pm 27^{+134}_{-73}}$
X(4685)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+37}_{-41}$

Strange meson results

- Default resoance model included 9 K*
- Measured the mass and widths of three K*
 - Parameters of other well known K* are fixed to PDG values
- Extended model included more higher mass K* as systemetic uncertainty

J^P	Cor	ntribution	Significance (σ)	M_0 (MeV)	Γ_0 (MeV)	FF (%)
1+	$2^{1}P_{1}$	$K(1^+)$	4.5 (4.5)	$1861 \pm 10^{+16}_{-46}$	$149 \pm 41^{+231}_{-23}$	
	$2^{3}P_{1}$	$K'(1^+)$	4.5 (4.5)	$1911 \pm 37^{+124}_{-48}$	$276\pm 50^{+319}_{-159}$	
	$1^{3}P_{1}$	$K_1(1400)$	9.2 (11)	1403	174	$15\pm 3^{+3}_{-11}$
2-	$1^{1}D_{2}$	$K_2(1770)$	7.9 (8.0)	1773	186	
	$1^{3}D_{2}$	$K_2(1820)$	5.8 (5.8)	1816	276	
1-	$1^{3}D_{1}$	<i>K</i> *(1680)	4.7 (13)	1717	322	$14\pm2^{+35}_{-8}$
	$2^{3}S_{1}$	<i>K</i> *(1410)	7.7 (15)	1414	232	$38\pm5^{+11}_{-17}$
2-	$2^{3}P_{2}$	$K_{2}^{*}(1980)$	1.6 (7.4)	$1988 \pm 22^{+194}_{-31}$	$318\pm82^{+481}_{-101}$	$2.3\pm0.5\pm0.7$
0-	$2^{1}S_{0}$	K(1460)	12 (13)	1483	336	$10.2 \pm 1.2^{+1.0}_{-3.8}$

$B^+ \rightarrow \psi(2S)K^+\pi^+\pi^-$: amplitude analysis

- Can study $K^+\pi^+\pi^-$ system, crucial for NP studies of $B \to K\pi\pi(\gamma/\mu\mu)$
- Can also study charmonium-like exotic states
- With ~1000 signal decays, Belle only studied the $K^+\pi^+\pi^-$ system [PRD 83 (2011) 032005]
- LHCb performed the first full amplitude analysis on this decay
- Baseline fit contributions
 - 6 K'^+ states
 - In 11 exotic states: most are very broad

Fit fraction [%]
$18.45 \pm 1.31 \pm 2.92$
$8.15 \pm 1.31 \pm 3.51$
$7.60 \pm 0.85 \pm 1.35$
$7.52 \pm 0.60 \pm 1.08$
$6.81 \pm 0.45 \pm 1.18$
$5.78 \pm 0.62 \pm 0.92$
$5.26 \pm 0.48 \pm 0.87$
$4.60 \pm 0.54 \pm 2.17$
$4.42 \pm 0.98 \pm 2.17$

....

Fit projections

[JHEP 01 (2025) 054]

• Fit quality is acceptable, 7D $\chi^2/ndof = 1.2$

Exotic contributions

• 3 new $T_{c\bar{c}\bar{s}} \rightarrow \psi(2S)K\pi$ states are observed

• $\psi(2S)K$ mass above $Z_{cs}(4000)^+$, only tail of $Z_{cs}(4000)^+$ can contribute

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [MeV]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925 \pm 22 \pm 47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

25/26

Summary

- LHCb has great potential to study strange and no-strange hadrons with different decay final state
- We have studied the *X* resonances from $B \rightarrow J/\psi X$ decays □ More final states, such as $B \rightarrow J/\psi K_S^0 K \pi$, to be tried
- More studies are preformed from D decays
- We also have a good start with light hadrons final state such as $B \rightarrow (K_S^0 K \pi) K$ decays
- For higher K* states, we can also try with *B* radiate decays

The precision understanding of the strange and no-strange hadron spectroscopy is important for LHCb in the study of the heavy-flavour exotic states

Exotic contributions

[arXiv: 2407.12475]

- 4 $X^0 \rightarrow \psi(2S)\pi^+\pi^-$ states are identified
 - Main decay mode is $\psi(2S)\rho^0$

- Similar but broader that the states observed in $B^+ \rightarrow J/\psi \phi K^+$
- But they might not the same, $\psi(2S)\rho^0$ has I=1, $J/\psi\phi$ has I=0

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}	
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227{\pm}26{\pm}22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40	States in $R^+ \rightarrow$
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm 9\pm 10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}	$\int \frac{D}{J/\psi\phi K^+}$
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}	
$T^*_{c\bar{c}1}(4055)^+$	1^{-}	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13	
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}	
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251{\pm}42{\pm}82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31	
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$				
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925{\pm}22{\pm}47$	$255 \pm 55 \pm 127$				
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$				
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30	

Exotic contributions

- 3 $T_{c\bar{c}}^{(*)} \rightarrow \psi(2S)\pi$ states are identified
 - Confirmed $Z_c(4430)^+$ seen in $\overline{B}^0 \to \psi(2S)\pi^+K^-$

- Confirmed $Z_c(4200)^+$ seen in $\overline{B}^0 \to J/\psi \pi^+ K^-$, and $J^P = 1^+$ is determined for the 1st time
- $\Box T_{c\bar{c}}(4055)^+ \text{ seen in } e^+e^- \rightarrow \psi(2S)\pi^+\pi^- \text{ is also needed}$

Resonance	J^P	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$	Res. PDG	$m_0 [{ m MeV}]$	$\Gamma_0 [{\rm MeV}]$
$\chi_{c0}(4475)$	0^{+}	$4475 \pm 7 \pm 12$	$231 \pm 19 \pm 32$	$\chi_{c0}(4500)$	4474 ± 4	77^{+12}_{-10}
$\chi_{c1}(4650)$	1^{+}	$4653 \pm 14 \pm 27$	$227 \pm 26 \pm 22$	$\chi_{c1}(4685)$	4684^{+15}_{-17}	126 ± 40
$\chi_{c0}(4710)$	0^{+}	$4710 \pm 4 \pm 5$	$64\pm9\pm10$	$\chi_{c0}(4700)$	4694^{+16}_{-5}	87^{+18}_{-10}
$\eta_{c1}(4800)$	1^{-}	$4785 \pm 37 \pm 119$	$457 \pm 93 \pm 157$	X(4630)	4626^{+24}_{-110}	174^{+140}_{-80}
$T^*_{c\bar{c}1}(4055)^+$	1-	4054 (fixed)	45 (fixed)	$T_{c\bar{c}}(4055)^+$	4054 ± 3.2	45 ± 13
$T_{c\bar{c}1}(4200)^+$	1^{+}	$4257 \pm 11 \pm 17$	$308 \pm 20 \pm 32$	$T_{c\bar{c}1}(4200)^+$	4196^{+35}_{-32}	370^{+100}_{-150}
$T_{c\bar{c}1}(4430)^+$	1^{+}	$4468 \pm 21 \pm 80$	$251 \pm 42 \pm 82$	$T_{c\bar{c}1}(4430)^+$	4478^{+15}_{-18}	181 ± 31
$T_{c\bar{c}\bar{s}1}(4600)^0$	1^{+}	$4578 \pm 10 \pm 18$	$133 \pm 28 \pm 69$			
$T_{c\bar{c}\bar{s}1}(4900)^0$	1^{+}	$4925{\pm}22{\pm}47$	$255 \pm 55 \pm 127$			
$T^*_{c\bar{c}\bar{s}1}(5200)^0$	1^{-}	$5225 \pm 86 \pm 181$	$226 \pm 76 \pm 374$			
$T_{c\bar{c}\bar{s}1}(4000)^+$	1^{+}	4003 (fixed)	131 (fixed)	$T_{c\bar{c}\bar{s}1}(4000)^+$	4003^{+7}_{-15}	131 ± 30

Introduction

- Hadron spectroscopy provides opportunities to study QCD in the non-perturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge of QCD
- Exotic hadrons provide unique probe to QCD
 - Predicted in quark model
 - Recent results show strong evidence for their existence

mesonic molecule ?

tetraquark?

pentaquark?

EXOTIC

hybrid ?

meson

