

CMS Heavy Meson FCNC results

Dayong Wang Peking University

Guilin, 2025.07.12

Why CMS is marvelous for heavy hadron studies

Evolution of BPH triggers

- Many heavy-hadron analyses in CMS rely on dimuon triggers
- we moved from a set of triggers dedicated to specific dimuon mass regions or topologies, to an inclusive dimuon trigger with loose requirements on the momenta

Faster and more power-efficient HLT reconstruction

+50% event processing throughput +15-25% performance per kW

Portable heterogeneous software (Alpaka) deployed same code base can run seamlessly on CPUs and GPUs

w/ Eric and Wendy Schmidt Fund for Strategic Innovation

Greatly increase the event rate we can take and used in analysis 12B events useful events were collected

Data Parking and scouting

- Selected L1 Triggers feed into stream with higher HLT rate and reduced content events for specific signatures
- Two streams: jets and muons

opening up otherwise inaccessible low-mass phase space

2.5

20

CMS-

delayed availability for analysis

PARKING

NORMAL

normal availability for analysis

SCOUTING

reduced data format

normal availability for analysis

CMS data taking scheme(RunII)

CMS coverage far beyond design values

- Parking is now integral to the core physics program (Higgs, searches, etc.), and opens large phase space for flavour physics
- HLT scouting runs at ~30 kHz (1/3 of accepted L1T events)
 - •Using HLT objects for physics analyses in an even wider phase space

味改变的中性流过程

- Flavour-changing-neutral-current (FCNC) transition: transitions between quarks of the same electric charge
- SM: forbidden at tree level, need more complex diagrams to achieve
- Enhanced in many BSM theories: new particles can contribute at the loop or tree level
- NP can modify angular parameters, decay rates ...

FCNC processes $b \rightarrow s\mu^+\mu^-$: golden indirect probes of NP

$B^0 \to K^{*0} \mu \mu$ 过程的角分析

Angular analysis

- measure the rate of a decay process as a function of the angles of the final decay products
- Compared to measuring the branching fractions: give access to large range of observables with reduced theory uncertainties
- Can help deduce nature of new physics models

 $B^0 \rightarrow K^{*0} \mu \mu$ can be fully described by the three angles (θ_l , θ_k , ϕ) and the dimuon invariant mass squared q^2

 $\cos \theta_l = (\hat{p}_{\mu^+}^{(\mu^+\mu^-)}) \cdot (-\hat{p}_{B^0}^{(\mu^+\mu^-)})$

$$\cos\theta_K = (\hat{p}_{K^+}^{(K^{*0})}) \cdot (-\hat{p}_{B^0}^{(K^{*0})})$$

$$\begin{aligned} \cos\phi &= (\hat{p}_{\mu^{+}}^{(B^{0})} \times \hat{p}_{\mu^{-}}^{(B^{0})}) \cdot (\hat{p}_{K^{+}}^{(B^{0})} \times \hat{p}_{\pi^{-}}^{(B^{0})}) \\ \sin\phi &= [(\hat{p}_{\mu^{+}}^{(B^{0})} \times \hat{p}_{\mu^{-}}^{(B^{0})}) \times (\hat{p}_{K^{+}}^{(B^{0})} \times \hat{p}_{\pi^{-}}^{(B^{0})})] \cdot \hat{p}_{K^{*0}}^{(B^{0})} \end{aligned}$$

Note: \hat{p}_x^{γ} refers to the unit vector giving the direction of x in the rest frame

微分衰变率公式

Differential distribution:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} F_T \sin^2\theta_K + F_L \cos^2\theta_K \right]$$

 P'_i basis: form factor uncertainties cancel at first order

$$F_{L}$$

$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{1 - F_{L}}$$

$$P_{3} = \frac{-S_{9}}{1 - F_{L}}$$

$$P_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}}$$

$$P_{6}' = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}}$$

 $+ \frac{A_{S}^{4}}{4}\sin\theta_{K}\sin2\theta_{l}\cos\phi + \frac{A_{S}^{5}}{4}\sin\theta_{K}\sin\theta_{l}\cos\phi + \frac{A_{S}^{5}}{4}\sin\theta_{K}\sin\theta_{l}\cos\phi + \frac{A_{S}^{5}}{4}\sin\theta_{K}\sin\theta_{l}\sin\phi + \frac{A_{S}^{5}}{4}\sin\theta_{K}\sin2\theta_{l}\cos\phi + \frac{A_{S}^{7}}{4}\sin\theta_{K}\sin\theta_{L}\sin\phi + \frac{A_{S}^{8}}{4}\sin\theta_{K}\sin2\theta_{l}\sin\phi + \frac{A_{S}^{8}}{4}\sin\theta_{L}\sin\phi + \frac{A_{S}^$

 $(1 - Fs)\Gamma_{\rm P} + 2./3.(F_{\rm S}\sin^2\theta_l + A_{\rm S}\sin^2\theta_l\cos\theta_K)$

- ➢ 8 angular parameters
- Sensitive to the Wilson coefficients
- \succ $F_L, A_{FB}, S_i = f(C_7, C_9, C_{10})$

 \succ F_T = 1 - F_L

实验测量的意义与历史: F_L and A_{FB}

FCNC processes $b \rightarrow sl+l$ - are not ultra rare, but provide an exceedingly rich set of observables to probe for NP effects, sensitive to non-SM helicity structures (and more).

- Long history of measurement at B-factories and hadron colliders
- Angular analysis with ATLAS, BaBar, Belle,
 CDF, CMS and LHCb
- > No deviation from SM for F_L and A_{FB}

BaBar: PRD 86,032012 Belle: PRL 88,021801 PRL 103,171801 CDF: PRD 79,031102 PRL 108,081807 CMS: PLB 727 (2013) 77 PLB 753 (2016) 424 LHCb: JHEP 08 (2013) 131

- CMS performed partial angular analyses with Run-1 data, to measure F_L, A_{FB} and P₁, P'₅ separately
 - > Parameter space was reduced by integrating or folding the angular variable

- CMS: PLB 781 (2018) 517541 LHCb: JHEP 02 (2016) 104 Belle: PRL 118 (2017) SM: JHEP 01 (2013) 048, JHEP 05 (2013) 137
- P'_5 anomaly: ~ 3σ discrepancy in some q^2 bin in LHCb results
- CMS Run2 collected 140 fb⁻¹ of 13 TeV p-p data -> make it possible to perform a full angular analysis

Run2: Full angular analysis of $B^0 \rightarrow K^{*0} \mu \mu$

2025/7/12

CMS-BPH-21-002

PLB 864 (2025) 139406

物理边界和统计误差

- Physical region: the decay rate is guaranteed to be positive for any values of three angles, a 7-dimensional requirements on P'_i parameters
 - For full MC sample: fit results are always physical
 - For data-like statistics MC subsamples: only a fraction of the fit converges to a physical result, a penalized likelihood is used to obtain a physical result from the rest of the samples
- Statistical uncertainty extracted with likelihood profile on each parameter
 - ΔNLL=0.5 contour of the fit likelihood profile on each parameter
 - Method accounts for limits of physical region in parameter space

Fit result

Evaluated from MC for CT and WT separately

 $\epsilon_{c}(\cos\theta_{K},\cos\theta_{l},\phi) = \frac{N_{\rm acc}(\cos\theta_{K},\cos\theta_{l},\phi)_{\rm GEN}}{D_{\rm acc}(\cos\theta_{K},\cos\theta_{l},\phi)_{\rm GEN}} \cdot \frac{N_{\rm sel}^{\rm corr}(\cos\theta_{K},\cos\theta_{l},\phi)_{\rm RECO}}{D_{\rm sel}(\cos\theta_{K},\cos\theta_{l},\phi)_{\rm GEN}}$

- $\epsilon_w(\cos\theta_K,\cos\theta_l,\phi) = \frac{N_{\rm acc}(-\cos\theta_K,-\cos\theta_l,-\phi)_{\rm GEN}}{D_{\rm acc}(-\cos\theta_K,-\cos\theta_l,-\phi)_{\rm GEN}} \cdot \frac{N_{\rm sel}^{\rm wrong}(\cos\theta_K,\cos\theta_l,\phi)_{\rm RECO}}{D_{\rm sel}(-\cos\theta_K,-\cos\theta_l,-\phi)_{\rm GEN}}$
 - Method to describe distributions as sum of multivariate Gaussians
 - > Applied on numerators and denominators, then ratio is performed on the functions

q² bin 2 2016 1D and 2D projections of KDE function for correct tag Selected correct-tag distribution - g2 bin 2 (odd 3000 cosθ_κ $\cos\theta_{I}$ Φ

 $\cos\theta_{\kappa} vs \phi$

 $\cos\theta_{\rm K}$ vs $\cos\theta_{\rm I}$

 $\cos\theta_{\rm I}$ vs ϕ

	Params	2016	2017	2018	
Signal angular pdf	$\begin{array}{c} F_L \\ P_1 \\ P_2 \\ P_3 \\ P_4' \\ P_5' \\ P_6' \\ P_8' \end{array}$				
Signal mass pdf RT	$\sigma_{RT1}, \sigma_{RT2}, \alpha_{RT1}, \\ \alpha_{RT2}, n_{RT1}, n_{RT2}, f^{RT}$	constr. to MC	constr. to MC	constr. to MC	
	m _{RT}	free	free	free	
Signal mass pdf WT	gnal mass pdf WT $(m_{WT} - m_{RT}), \sigma_{WT}, \alpha_{WT1}, \alpha_{WT2}, n_{WT1}, n_{WT2}, f^{WT}$		constr. to MC	constr. to MC	
Mistag corr. factor	R	constr. to MC	constr. to MC	constr. to MC	
Bkg mass shape	slope	free	free	free	
Bkg angular shape	various c _i	fixed from sb	fixed from sb	fixed from sb	
Yields	Y_S, Y_B	free	free	free	

$K\pi\mu\mu$ 不变质量谱的描述

- Mass model for each signal component (CT and WT) are modeled on MC
 - parametrized by a Double Crystal-ball function or combination of Gaussian and Crystal-ball functions used (according to q²bin)
- The data mass distribution is then fit with the model defined on the MC
 - means, widths, mistag fraction have gaussian constraints to values fitted on signal MC
 - > The background is parametrized using an exponential function

基于模拟样本的封闭性检验

■ 类数据统计量模拟样本

- ♦ 3D Fit to Gen-level MC
 - > Use pure decay rate as pdf, reference values in the following validation steps
- Fit to Reco-level MC
 - > angular decay rate times efficiency, add signal mass shape when perform 4D fit

- validation on toy samples are performed in 3 steps
 - > 3D fit to data-like statistics signal only
 - > 4D fit to data-like statistics signal only
 - > 4D fit to cocktail toy samples
- Validate the fit procedure with data-like statistics and background

q² (GeV²

封闭性检验—控制道

- Full fit procedure validated on control channels data samples (adding the Swave component to the pdf)
- Fit validation also perform ٠ on data-like samples
 - > Subsamples of J/ψ channel dataset
 - Toy samples \succ generated from J/ψ channel fit model
- Validate the fit method in ٠ realistic signal q^2 bin

- MC statistics: propagation of the statistical fluctuation of the distribution of MC events
- Sideband statistical uncertainty: statistical fluctuation on the angular distribution of the data sideband
- Partially-reconstructed background: remove a fraction of the low mass sideband from the fit procedure, and use the difference of the results as systematic uncertainty
- Resonant background: add a MC-based component to describe the leaking contribution of resonant channels

Source	$F_L (\times 10^{-3})$	$P_1 (imes 10^{-3})$	$P_2 (\times 10^{-3})$	$P_3 (\times 10^{-3})$
Efficiency modeling	1-9	7-44	3-11	0-46
Fit bias	1-2	0-6	2-62	1-12
Mistag fraction	0-2	1-4	1-3	0-14
Signal mass resolution	1-10	1-12	2-11	1-21
Signal mass shape	0-9	1-22	0-10	3-70
Background mass shape	0-5	1-16	1-13	0-8
MC statistics	1-10	5-31	1-64	4-45
Background statistics	2-6	4-20	1-21	2-16
Data/MC differences	8-8	0-23	0-16	0-13
Partially reco bkg	1-1	1-1	0-0	1-1
Resonant bkg		0-6	0-5	0-2
Source	P_4' (×10 ⁻³)	$P_5' (\times 10^{-3})$	$P_{6}'(\times 10^{-3})$	$P_8' (imes 10^{-3})$
Efficiency modeling	3-87	2-13	5-16	6-28
Fit bias	9-54	0-8	0-3	0-24
Mistag fraction	1-5	1-10	0-4	0-12
Signal mass resolution	4-23	0-12	0-5	0-16
Signal mass shape	2-16	1-15	0-7	0-91
Background mass shape	6-30	1-13	0-7	1-10
MC statistics	5-47	4-22	4-13	10-59
Background statistics	6-37	4-24	3-9	5-23
Data/MC differences	0.11	0.10	0.2	0.20
	0-11	0-13	0-3	0-30
Partially reco bkg	0-11 25-25	0-13 0-0	0-3	2-2

CMS $B^0 \rightarrow K^{*0} \mu \mu$: **HL-LHC** projections

New projection. For each q² bin:

- Yields scaled for $\int L$ and bb-cross section (14/13 TeV) ratio
- Stat. error obtained scaling the Run2 uncertainty by \sqrt{L} ratio
- Syst. error related to N(B) in the sideband scaled by \sqrt{L} ratio
- No syst. related to MC statistics
- For other systematics 2 scenarios: same as Run2 or reduced by a factor 2 wrt Run2

q^2 bin	P_4' (x10 ⁻³)			$P_5'(x10^{-3})$			P_6' (x10 ⁻³)			P_8' (x10 ⁻³)		
$[\text{GeV}^2]$	σ_{st}	σ_{sy}	σ_{sy}^l	σ_{st}	σ_{sy}	σ_{sy}^l	σ_{st}	σ_{sy}	σ_{sy}^l	σ_{st}	σ_{sy}	σ_{sy}^{l}
1.1 - 2	64	47	94	31	5	11	20	8	16	77	48	95
2 - 4.3	36	31	60	20	15	29	15	7	13	39	20	39
4.3 - 6	32	31	62	21	10	19	15	4	7	45	7	13
6 - 8.68	21	25	49	14	9	17	11	7	13	30	18	35
10.09 - 12.86	14	28	57	7	6	12	8	5	10	21	11	22
14.18 - 16	8	20	40	8	8	16	8	4	9	18	8	17
16 - 19	8	20	40	7	8	16	8	4	9	17	8	17

Statistical error still dominant

2025/7/12 第八届强子谱和强子结构研讨会

CMS-BPH-25-004 arXiv:2503.24346

Flavour inputs to ESPPU

Measurements of $B^+ \rightarrow K^+ I I$ with B parking data

$$\mathcal{R}(K) = \frac{\mathcal{B}(B \to \mu\mu K)}{\mathcal{B}(B \to J/\psi(\to \mu\mu)K)} / \frac{\mathcal{B}(B \to eeK)}{\mathcal{B}(B \to (B \to J/\psi(\to ee)K))}$$

- Theoretical precision:1.00±0.01
- New data-acquisition technique: 2018 B-Parking
- Fit to Kll invariant mass in 3 q² regions,
 - SR: (1.1, 6.0) GeV, J/ψ CR: (8.41, 10.24) GeV ψ(2S)CR: (12.6,14.4) GeV
- Dedicated low-pT ID for electrons
- Main Backgrounds suppressed mostly through ID BDTs:
 - Partially reconstructed $B \rightarrow K^*(892)$
 - J/ψ leakage and any other B decays
 - Combinatorial
- Ratio extracted from profile likelihood

$$R(K) = 0.78^{+0.46}_{-0.23} \text{ (stat)}^{+0.09}_{-0.05} \text{ (syst)} = 0.78^{+0.47}_{-0.23}$$

Source	Impact on the $R(K)$ ratio [%]			
	PF-PF	PF-LP		
Signal and background description	5	5		
J/ ψ event leakage to the low- q^2 bin	4	9		
BDT efficiency stability	2	5		
BDT cross validation	2	3		
Trigger efficiency	1	4		
BDT data/simulation difference	1	2		
J/ ψ meson radiative tail description	1	1		
Total systematic uncertainty	7	13		
Statistical and total uncertainty	40	200		

Electron channel limiting precision

Rep. Prog. Phys. 87 (2024) 077802

26

Dayong Wang

- Heavily suppressed in the SM (loop diagram + helicity)
 - ♦ BR prediction ~ 10⁻¹³
 - High sensitivity to new-physics phenomena
 - ◆ Previous best limit at: BR(D⁰→µµ) < 3.5 x10⁻⁹ (95% CL) by LHCb
- This analysis uses 2022+2023 CMS data with new low-momentum dimuon trigger
 - a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program.

Key points of the search

Analysis Strategy

- \blacklozenge uses D0 from cascade decays: $D^{*+}{\rightarrow}D^{0}\pi^{+}$
- Exploits mass difference Δm = m(D^{*+}) m(D⁰) to strongly suppress combinatorial
- D*+ produced promptly or from B-hadron decays
- Final state: opposite charged muons + track
- **D0** \rightarrow **π+π-used as normalization channel**:

$$\mathcal{B}(\mathrm{D}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathrm{D}^{0} \to \pi^{+}\pi^{-}) \frac{N_{\mathrm{D}^{0} \to \mu\mu}}{N_{\mathrm{D}^{0} \to \pi\pi}} \frac{\varepsilon_{\mathrm{D}^{0} \to \pi\pi}}{\varepsilon_{\mathrm{D}^{0} \to \mu\mu}}$$

Source of backgrounds

- Combinatorial: suppressed via gradient BDT, exploiting topological features
- Peaking backgrounds for signal:
 - $D^{*+} \rightarrow D^0 (\pi \pi) \pi \rightarrow \mu \mu + X$
 - D^{*+}→D⁰ (πµν)π
- Peaking background for normalization channel:
 - D^{*+} → D⁰ (Kπ)π

2025/7/12

第八届强子谱和强子结构研讨会

Search results

2D UML fits:

• to $[m(\pi\pi), \Delta m]$ in normalization sample

Candidates / 5 MeV

Data – Total bkg.

• to $[m(\mu\mu), \Delta m]$ in signal sample

B(D⁰ → μ + μ -) < 2.1(2.4)x10⁻⁹ at 90(95)% CL, upper limit improved by ~40%

the most stringent upper limit set on any flavor changing neutral current decay in the charm sector

第八届强子谱和强子结构研讨会

Still 4 order of magnitude above SM prediction

CMS-BPH-23-008

Arxiv:2506.06152

Dayong wang

2025/1/12

CMS B_s and $B^0 \rightarrow \mu \mu$: **HL-LHC projections**

CMS-BPH-25-004 arXiv:2503.24346

Flavour inputs to ESPPU

New projection:

- Yields scaled for $\int L$ and cross section (14/13 TeV) ratio
- Improved mass resolution included as scaling factor
- Same integrated S/B ratio as in the current analysis
- Stat. uncertainty from fits to pseudo-data
 - with s-plots weights for the lifetime
- Same syst. uncertainty as in Run2. Exceptions:
 - 1.5% instead 2.3% in tracking efficiency
 - 2.4% trigger efficiency uncertainty, uniform across categories
 - Total: 3.5% from fs/ fu ratio; 4.3% for all other sources
 - x2 improvement for lifetime fit bias and the mismodeling of the decay time distribution

Systematics becomes relevant for Bs; Clear observation of $B_0 \rightarrow \mu\mu$ possible

\mathcal{L}	$N(B_s^0)$	N(B ⁰)	$\delta {\cal B}({ m B}^0_{ m s} o \mu \mu)$			$\delta {\cal B}({ m B}^0 o \mu \mu)$	${ m B}^0 o \mu \mu$	$\delta \tau (B_s^0)$	i)[ps]	
			stat.+syst.	$f_{\rm s}/f_{\rm u}$	total		significance	stat.	syst.	total
$2 ab^{-1}$	2539	302	5.0%	3.5%	6.1%	14%	$7.4-9.7\sigma$	0.044	0.026	0.051
3 ab^{-1}	3808	452	4.8%	3.5%	5.9%	12%	9.1–11.5σ	0.036	0.026	0.044

* Medians of 5k toys

in a $\pm 1\sigma$ range

Summary

- CMS is probing SM with heavy hadrons extensively
- Many new results from heavy hadron studies
 - B and D FCNC processes
 - Run2: Full angular analysis of $B^0 o K^{*0} \mu \mu$, PLB 864 (2025) 139406
 - BF measurement and LFU test of $B^+ \rightarrow K^+ / / :$ Rep. Prog. Phys. 87 (2024) 077802
 - $D^0 \rightarrow \mu\mu$: arxiv:2506.06152
 - Conventional and exotic hadron spectroscopy
 - Heavy hadron production and polarization measurements
 - CKM triangle and CP violation

- More Flexible trigger and data-taking schemes implemented in Run3, more sensitive results expected
 - ♦ HL-LHC coming in ~5 years, projections updated

More:

CMS Public Results

Back up

Studies of CP violation in charm and beauty

