

Electromagnetic Form Factors of $\Omega^$ in the Spacelike and Timelike Regions

付东彦 近代物理研究所

DYF, Xie, and Dong, arXiv: 2505.03363

第八届强子谱和强子结构研讨会 广西师范大学

2025. 07. 13

> Introduction

> Quark-diquark model with meson cloud

> Introduction

> Quark-diquark model with meson cloud

Introduction

• 散射截面 = 点状粒子散射截面*形状因子

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left|F(\Delta^2)\right|^2$$

- 形状因子F(Q²)被提出,代表与点状粒子的偏离程度
- 历史上首次测量质子半径

 $\sqrt{\langle r^2 \rangle} = 0.74 \pm 0.24 \,\mathrm{fm}$

R. Hofstadter

PROTON 1.00 0.90 EXPONENTIAL MODEL 0.80 0.70 0.60 0.50 -r_e = r_m = 0.80 x 10¹³ CM 0.40 0.30 - 200 MEV - 300 MEV 0.20 ▲ - 400 MEV • - 500 MEV 0.15 ×-550 MEV 0.10L___ 0 2 6 4 8 10 12 14 q2

۲. ۲

R. Hofstadter, Rev.Mod.Phys. 28 (1956)

Introduction

 $t = \Delta^2$

Breit系下, 在小动量处展开: •

$$G_E(t) = \int \rho(\vec{r}) e^{i\vec{\Delta}\cdot\vec{r}} d^3\vec{r} = \int \rho(\vec{r}) d^3\vec{r} - \frac{\vec{\Delta}^2}{6} \int \rho(\vec{r}) \vec{r}^2 d^3\vec{r} + \dots = G_E(0) \left(1 + \frac{t}{6} \langle r^2 \rangle + \dots\right)$$

• 诵 讨 形 状 因 子 的 斜 率 即 可 得 到 对 应 的 半 径 · Breit 系: $\Delta = (0, \vec{\Delta})$

通过形状因子的斜率即可得到对应的半径: •

$$\left\langle r^2 \right\rangle_E = \frac{6}{G_E(0)} \frac{d}{dt} G_E(t) \Big|_{t=0}$$

电荷分布 ρ(r)	电荷形状因子 $G_E(\Delta^2)$	电荷半径 $\langle r^2 \rangle_E$
点电荷: $\delta(r-r')$	1	0
汤川分布: $\frac{M^2}{4\pi} \frac{e^{-Mr}}{r}$	$\frac{1}{1+\Delta^2/M^2}$	$6/M^2$
指数分布: $\frac{M^3}{8\pi}e^{-Mr}$	$\frac{1}{(1+\Delta^2/M^2)^2}$	$12/M^2$
正态分布: $\frac{1}{\sqrt{\pi^3 b^6}} e^{-r^2/b^2}$	$e^{-b^2\Delta^2/4}$	$3b^2/2$

H. Gao, and M. Vanderhaeghen, Rev.Mod.Phys. 94 (2022) 1, 015002

 $F_{E,M}^{TL}(q^2) = F_{E,M}^{SL}(-q^2 + 2M^2)$

G. Ramalho. Phys. Rev. D, 103(7):074018, 2021

Experiments about Spin-3/2 particles

同时计算Ω-在类空和类时区域的电磁形状因子

- 自旋-3/2粒子的实验越来越多,包括CLEO、BESIII、BARBAR、BelleII、Jlab、J-PARC、 EICC、EIC以及其他实验都已经或未来会测自旋-3/2粒子的结构,但是相关理论预言较少;
- 电磁形状因子是粒子结构中最基本和最容易测量的物理量;
- Ω-是自旋3/2粒子中寿命相对较长,相对易测的粒子。

CLEO和BESIII已经有 Ω^- 类时电磁形状因子的结果:

第八届强子谱和强子结构研讨会

EMFF definitions of Spin-3/2 particles

• 自旋-3/2粒子有4个独立的电磁形状因子,

	类空	类时
电磁流矩阵元	$\left\langle N_{3/2}(p',\lambda') \left J^{\mu}(0) \right N_{3/2}(p,\lambda) \right\rangle$ $= -\bar{u}_{\alpha'}(p',\lambda') \Gamma^{SL,\alpha'\alpha\mu} u_{\alpha}(p,\lambda)$	$ \left\langle N_{3/2}(p',\lambda')\bar{N}_{3/2}(p,\lambda) \left J^{\mu}(0) \right 0 \right\rangle $ = $-\bar{u}_{\alpha'}(p',\lambda')\Gamma^{TL,\alpha'\alpha\mu}v_{\alpha}(p,\lambda)$
转移动量	q = p' - p	q = p' + p
矩阵元分解	$\Gamma^{SL/TL,\alpha'\alpha\mu} = \gamma^{\mu} \left(g^{\alpha'\alpha} F_{1,0}^{SL/TL} - \right)$	$+ \frac{q^{\alpha' q^{\alpha}}}{2M^2} F_{1,1}^{SL/TL} + \frac{i\sigma^{\mu q}}{2M} \left(g^{\alpha' \alpha} F_{2,0}^{SL/TL} + \frac{q^{\alpha' q^{\alpha}}}{2M^2} F_{2,1}^{SL/TL} \right)$
形状因子定义	$G_{E0}^{SL/TL} = \left(1 - \frac{2}{3}\tau\right) \left(F_{1,0}^{SL}\right)^{TL}$ $G_{E2}^{SL/TL} = \left(F_{1,0}^{SL/TL} + \tau F_{2,0}^{SL}\right)^{TL}$ $G_{M1}^{SL/TL} = \left(1 - \frac{4}{5}\tau\right) \left(F_{1,0}^{SL}\right)^{TL}$ $G_{M3}^{SL/TL} = \left(F_{1,0}^{SL/TL} + F_{2,0}^{SL}\right)^{TL}$	$ \tau^{TL} + \tau F_{2,0}^{SL/TL} + \frac{2}{3} \tau (1 - \tau) \left(F_{1,1}^{SL/TL} + \tau F_{2,1}^{SL/TL} \right), \qquad \tau = \frac{q^2}{4M^2} $ $ \tau^{L/TL} - \tau \left(F_{1,1}^{SL/TL} + \tau F_{2,1}^{SL/TL} \right), \qquad \tau = \frac{q^2}{4M^2} $ $ \tau^{TL} + F_{2,0}^{SL/TL} + \frac{4}{5} \tau (1 - \tau) \left(F_{1,1}^{SL/TL} + F_{2,1}^{SL/TL} \right), \qquad \tau = \frac{q^2}{4M^2} $

> Introduction

> Quark-diquark model with meson cloud

Quark-Diquark Model

Meson Cloud Effect

• 包含s夸克的质量最低的粒子: $K m_K = 493.67 \text{ MeV}$

$$I(J^P) = \frac{1}{2}(0^-)$$
 $\bar{K}^0 = \bar{d}s$ $K^- = \bar{u}s$

• 通过夸克的自能修正可以计算Z的大小

$$\Pi_{PP}(p^2) = 6i \int \frac{d^4k}{(2\pi)^4} Tr\left[\gamma^5 S(k)\gamma^5 S(k+p)\right] \qquad S(k) = \frac{1}{\not k - m_q + i\epsilon}$$

 $p_q - k$

2025/7/13

Effective Propagator

NJL模型拉氏量:

 $\mathcal{L}_{NJL} = \bar{\psi}(i\partial \!\!\!/ - \hat{m})\psi + G_{\pi}[(\bar{\psi}\lambda_a\psi)^2 - (\bar{\psi}\lambda_a\gamma_5\psi)^2] - G_v[(\bar{\psi}\lambda_a\gamma^{\mu}\psi)^2 - (\bar{\psi}\lambda_a\gamma^{\mu}\gamma_5\psi)^2]$

以 π 为例,描述介子和核子耦合的最小定域相互作用拉氏量: $\mathcal{L}_{\pi NN} = iG_{\pi NN}\bar{\psi}_N\gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi}\psi_N$

夸克层次:
$$\mathcal{L}_{\pi NN} \to \mathcal{L}_{\pi qq} = ig_{\pi qq} \bar{\psi} \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi} \psi$$

通过夸克散射可以得到有效传播子: $au_{\pi} = rac{-ig_{\pi qq}^2}{k^2 - m_{\pi}^2 + i\epsilon}$ $Z_{\pi}^2 = g_{\pi qq}^2$

夸克层次的Goldberger-Treiman (GT)关系:

$$f_{\pi}^2 g_{\pi qq}^2 = m_l^2 \qquad \qquad g_{\pi qq}^2 = 18.5$$

2025/7/13

➤ Introduction

> Quark-diquark model with meson cloud

Parameters

*K*传播子参数 $Z_K = 20.28$

C. Alexandrou, et. al. Phys. Rev. D, 82:034504, 2010

m_{π}	M	m_s	m_D	m_l	m_K
0.350	1.792	0.640	1.230	0.440	0.534
0.330	1.778	0.636	1.221	0.436	0.530
0.297	1.760	0.629	1.209	0.429	0.523
0.140	1.672	0.600	1.150	0.400	0.494

质量变化率:

$$B(m_s) = \frac{1}{3}B(M)$$

$$B(m_D) = \frac{2}{3}B(M)$$

$$B(m_l) = B(m_K) = B(M)$$

• 可调参数: $\Omega^- - quark - diquark$ vertex

$$c_2 = 0.13 \text{GeV}^{-1}, c_3 = 0.05 \text{GeV}^{-2}, m_R = M - 0.1 \text{GeV}$$

EMFFs in the Spacelike Region

电磁形状因子与格点的对比:

C. Alexandrou, et. al. Phys. Rev. D, 82:034504, 2010

EMFFs in the Spacelike Region

EMFFs in the Spacelike Region

介子云的贡献:

非点粒子顶点增加 2mg 项, 其主要贡献磁矩相关部分。

17/20

EMFFs in the Timelike Region

• 类空到类时形状因子的近似关系:

$$G_{E(0,2)}^{TL}(q^2) = G_{E(0,2)}^{SL}(-q^2 + 2M^2)$$

$$G_{M(1,3)}^{TL}(q^2) = G_{M(1,3)}^{SL}(-q^2 + 2M^2)$$

• 总截面与有效形状因子的关系:

Polarization of Ω^- in $e^+e^- \rightarrow \Omega^- \overline{\Omega}^+$

第八届强子谱和强子结构研讨会

19/20

➤ Introduction

> Quark-diquark model with meson cloud

- Summary
 - 借助quark-diquark模型,通过考虑介子云的贡献,使得模型更为精确,可以 较好地描述类空和类时区域的电磁形状因子,结果与实验以及格点结果符 合得较好。
 - 介子云的引入,使得电磁流顶点包含 ^{ioµq}/_{2mq} 项,因此介子云主要贡献在磁相关的各阶形状因子。
 - 同时,借用已有的极化公式,我们给出了 $e^+e^- \to \Omega^- \overline{\Omega}^+ + \Omega^-$ 的部分极化信息,有待将来实验检验。
 - 进一步,我们可以将带介子云的quark-diquark模型用于其他强子结构的计算, 比如引力形状因子,甚至GPDs等等。

Thank, you very much for your attention!