辛南仰紀大學

Machine Learning Unveils the Power Law of Finite-Volume Energy Shifts

Zhenyu Zhang (张振宇)

第八届强子谱和强子结构研讨会 桂林,广西师范大学, 2025.7.13

Wei-Jie Zhang, Zhenyu Zhang, Jifeng Hu, Bing-Nan Lu, Jin-Yi Pang and Qian Wang, Chin. Phys. Lett. 42(2025)7, 070202.

Table of Contents

Introduction to finite-volume extrapolation (FVE)

Study FVE using machine learning

Summary

1933 茅南仰範大導

Introduction

01

Introduction to FVE

- Lattice QCD performs the calculations in a given **finite volume** discretized into a cubic lattice
- **Finite-volume extrapolation** is essential to extract physical observables from lattice calculations
- Short-range case (Success in Lüscher formula^[1])
- Long-range case (e.g. OPE in nucleon scattering, meson exchange in DD* system^[2])
- Solving methods
 - (1) modifying the Lüscher formula numerically^[3]
 - (2) quantization conditions using plane-wave basis^[4]
 - (3) block-diagonalize the finite volume effective Hamiltonian^[5]

Protection of the second secon

Without explicit formula

[1] Lüscher M, Commun. Math. Phys. 104, 177(1986).
[2] Meng L, et al., Phys. Rev. D 109, L071506(2024).
[3] Bubna R, et al., JHEP 05, 168(2024).
[4] Meng L, et al., JHEP 10, 051(2021).

[5] Yu K, et al., JHEP 04, 108(2025).

4/18

Introduction to SR

Symbolic regression(SR): deriving mathematical expressions directly from data

Applications

- AI Feynman algorithm^[1] has derived 100 equations from the Feynman Lectures in Physics
- Graph Neural Networks + SR predict the concentration of dark matter from the mass distribution of nearby cosmic structures^[2].
- SR for key low-energy observables^[3], including the Higgs mass, muon anomalous magnetic moment, and dark matter relic density
- PySR + Deep neural network subtract background from jets in heavy ion collisions^[4]

•

[1] Udrescu S-M, et al., Sci. Adv. 6, eaay2631(2020).[3] AbdusSalam S, et al. Phys. Rev. D 111, 015022(2025).

[2] Cranmer M, et al., arXiv:2006.11287(2020).[4] Mengel T, et al., Phys. Rev. C 108, L021901(2023).

Introduction to LEFT

Lattice EFT = Chiral EFT+ Lattice + Monte Carlo

(1) EFT description of hadron interactions(contact terms + pion exchange potential)

(2) The degrees of freedom on the lattice are hadrons

(3) Lattice spacing $a \approx 1$ fm (~ chiral symmetry breaking scale)

Solving low-energy many-body problems!

[1] Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).[2] Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019).

	LQCD	LEFT
degree of freedom	quarks & gluons	hadrons
lattice spacing	~0.1fm	~1fm
dispersion relation	relativistic	non-relativistic
continuum limit	\checkmark	×
model	Lagrangian	Hamiltonian
solver	path integral	Schrödinger equation
		6/18

Framework and results

02

Framework

(3) Results analysis

- Reproduce the Lüscher formula^[3]
- Find the expression that unify short-range and long-range interactions

8/18

[1] Zhang Z, et al., Phys. Rev. D 111, 036002 (2025). [2] Cranmer M, arXiv:2305.01582 (2023). [3] Lüscher M, Commun. Math. Phys. 104, 177(1986).

Samples generation

Hamiltonian:

Han:

$$H = \sum_{i=1}^{2} \frac{\boldsymbol{p}_{i}^{2}}{2m_{i}} + f(\boldsymbol{p}_{1}^{(\prime)}, \boldsymbol{p}_{2}^{(\prime)})V(\boldsymbol{q})$$

Interaction:

$$V(\mathbf{r}) = +C_0 \delta^3(\mathbf{r})$$

 C_0 is the strength of the potential

H

Regulator^[1] (equal to directly cutoff on lattice):

 $f(\boldsymbol{p}_{1}^{(\prime)},\boldsymbol{p}_{2}^{(\prime)}) = \prod_{i=1}^{2} g_{\Lambda}(\boldsymbol{p}_{i}) g_{\Lambda}(\boldsymbol{p}_{i}^{\prime})$ $g_{\Lambda}(\boldsymbol{p}) = \exp(-\boldsymbol{p}^{6}/2\Lambda^{6})$

$$= \sum_{i=1}^{2} \frac{p_i^2}{2m_i} + f(p_1^{(\prime)}, p_2^{(\prime)}) V_S(q) + \hat{f}(q) V_L(q)$$

$$V(r) = -C_{01}\delta^3(r) + C_{02}\frac{e^{-\mu r}}{r}$$
Contact term and Yukawa potential

 $1/\mu$ reflecting the range of the force

$$\hat{f}(\boldsymbol{q}) = \exp(-(\boldsymbol{q}^2 + \mu^2)/\Lambda^2)$$

[1] B.-N. Lu et al., arXiv:2308.14559 (2023).

Samples generation

 C_0 is set to 1.5, 2.0, 2.5 and 3.0 MeV⁻² $C_{01}=C_{02}$ is set to 0.03, 0.09, 0.12 and 0.21 MeV⁻²

- Calculate on box size $L=10^3 \sim 30^3$ fm³ cubic lattice in periodic boundary conditions with N=2 bosons
- Set cutoff $\Lambda = 350(600)$ MeV, and lattice spacing a = 1/200(1/300) MeV⁻¹ $\approx 0.99(0.66)$ fm
- The convergence behavior exhibits slower in long-range case compared to short-range case

Symbolic regression

The PySR model samples the space of analytic expressions defined by the set of **operators**, input **variables**, and **constant** terms for minimization through **genetic algorithm**.

Symbolic regression

Metrics: two elements to measure the goodness of the output formulae in the PySR model, i.e., Loss and Score

• Loss is used to measure how well the output formula describes the samples, which is defined as mean square error:

Loss =
$$\sum_{i=1}^{N} (E_{\text{PySR}}(L_i) - E_L(L_i))^2 / N$$

• Score is used to estimate the form of the formula, which rewards minimal loss and penalizes the more complicated formula.

Score =
$$-\frac{\Delta \ln(\text{Loss})}{\Delta C}$$

PySR model will consider both score, i.e. complexity, and loss to choose the best formula

Short-range case:

Complexity	Loss	Score	Equation
1	5.818	0.000	L
2	0.014	6.016	-2.312
4	0.010	0.180	L - 2.410
5	0.007	0.396	$-2.549\exp(L)$
6	0.005	0.220	$-3.144 \exp(\sqrt{L})$
7	0.003	0.653	(-0.028/L) - 1.992
8	0.003	0.000	(-0.028/L) - 1.992
9	0.001	0.682	$-0.001/L^2 - 2.148$
10	3.679×10^{-4}	1.341	$(\sqrt{L} - 0.171)/L - 3.696$
11	1.831×10^{-6}	5.302	$-29.889 \exp(-83.458L) - 2.245$
12	1.826×10^{-6}	0.003	$-\exp(-83.388L + 3.393) - 2.245$
13	6.333×10^{-7}	1.059	$-0.629\exp(-66.049L)/L - 2.244$
14	6.292×10^{-7}	0.006	$-0.628 \exp(-66.022L)/L - 2.244$

Long-range case:

Complexity	Loss	Score	Equation
1	4.660	0.000	L
2	0.153	3.418	$\log(L)$
4	0.072	0.380	-0.172/L
5	0.021	1.237	$-0.613/\sqrt{L}$
6	0.008	1.006	$-\exp(0.058/L)$
8	0.002	0.676	$-\exp(0.056/L)-L$
9	0.002	0.253	$-0.004/L^2 - 1.413$
11	5.672×10^{-5}	1.646	$-15.311/\exp(46.272L) - 1.661$
13	6.928×10^{-6}	1.051	$-695.626L/\exp(63.072L)-1.677$
15	6.571×10^{-6}	0.026	$-681.508L/\exp(62.467L) + L^2 - 1.660$

Short-range case:

$$E_L = C_1 + C_2 e^{-C_3 L} / L^2$$
 (A)

$$\bigstar E_L = C_1 + C_2 e^{-C_3 L} / L \qquad (B)$$

 $\boldsymbol{E}_L = \boldsymbol{C}_1 + \boldsymbol{C}_2 \boldsymbol{e}^{-\boldsymbol{C}_3 L} \tag{C}$

Eq. (B) recurrents Lüscher's formula^[1]

$$E_L = E_{\infty} + \frac{C'}{L} \exp\left(-\kappa L\right)$$

The results of fitting the formula to samples. (a) is the case of $C_0=1.5 \text{ MeV}^{-2}$, (b) is the case of $C_0=2.0 \text{ MeV}^{-2}$, (c) is the case of $C_0=2.5 \text{ MeV}^{-2}$ and (d) is the case of $C_0=3.0 \text{ MeV}^{-2}$.

[1] Lüscher M, Commun. Math. Phys. 104, 177(1986).

Long-range case:

$$E_{L} = C_{1} + C_{2}e^{-C_{3}L}/L \quad (A)$$
$$E_{L} = C_{1} + C_{2}e^{-C_{3}L} \quad (B)$$
$$\Leftrightarrow E_{L} = C_{1} + C_{2}e^{-C_{3}L}L \quad (C)$$

- Set $\mu = 20$ MeV, the force range is about 10 fm.
- Compare with the formula for the short-range potential, the power of *L* becomes larger.
- This enlightens us that the power of *L* has a correlation with the force range.

Eq. (A), (B) and (C) fitting to the samples of the long-range potentials with $C_{01} = C_{02} = 0.03 \text{ MeV}^{-2}$ (a), $C_{01} = C_{02} = 0.09 \text{ MeV}^{-2}$ (b), $C_{01} = C_{02} = 0.12 \text{ MeV}^{-2}$ (c), and $C_{01} = C_{02} = 0.21 \text{ MeV}^{-2}$ (d).

Generalization:

- Samples with the long-range parameter μ=10, 20, ..., 120, 400, 600, 800 MeV are labeled from (a) to (o) in order
- For all the cases, the binding energy is around 3.83 MeV.
- The eight lines, i.e. Eq. (A), (B), (C), (D), (E), (F), (G) and (H), represent the power n=5/2, 2, 3/2, 1, 1/2, 0, -1/2, -1 of L from bottom to top in each figure.

 $E_L = C_1 + C_2 e^{-C_3 L} L^n$

• When the **force range decreases to short-range** (µ goes to infinity), the power n comes back to the formula

$$E_L = C_1 + C_2 e^{-C_3 L} L^{-1}$$

deduced from the Lüscher formula.

$$E_L = C_1 + C_2 e^{-C_3 L} L^n$$

The dependence of the power n on the range parameter μ .

- Blue dashed line is the infinity long-range limit($\mu = 0$)
- Green dotdashed line corresponds to the lower limit of box size($\hbar c/10$ fm ~ 20 MeV)
- Red dashed line is the short-range value -1 from Lüscher formula(n =- 1)

The dependence of the parameter C_3 on the range parameter μ .

- Blue dashed line is the infinity long-range $limit(\mu = 0)$
- Green dotdashed line corresponds to the lower limit of box size(ħc/10 fm ~ 20 MeV)
- Red dashed line is the binding momentum($\kappa_B = \sqrt{mE_{\infty}}$)

The formula recovers the **short-range limit** and expresses the **long-range trend**

1933 茅南仰孔大学

Summary

(1) Successful application of symbolic regression: the finite volume formula is successfully derived, which reproduces the Lüscher formula.

(2) Universal formula for long-range case: a modified extrapolation formula is proposed for long-range case.

(3) Extensions to many-body systems: finite volume effect in three- or many-body systems can be explored.

