Open-heavy flavor tetraquark states in a mass splitting model

满自龙 兰州大学

Based on

Shi-Yuan Li, Yan-Rui Liu, Zi-Long Man, Zong-Guo Si, and Jing Wu PRD 110 (2024) 094044

Shi-Yuan Li, Yan-Rui Liu, Zi-Long Man, Cheng-Rui Shu, Zong-Guo Si, and Jing Wu Symmetry 12 (2025) 170

This article belongs to the Special Issue

第八届强子谱和强子结构研讨会 桂林 2025年7月13日

Outlines

- 1. Background
- 2. Formalism
- 3. Results for $QQ\overline{qq}$, $Qq\overline{qq}$, and $QQ\overline{Q}\overline{q}$
- 4. Summary

Background

Hadron properties difficult to derive from QCD

High energy: asymptotic freedom

Low energy: non-perturbative important

Hadron properties difficult to derive from QCD

Methods: Lattice QCD, Quark Model, Effective field theory et al.

Particle Data Group, Phys. Rev. D 110, 030001 (2024)

Hadronic structure

Experimental progress on the exotic hadronic states

 T^+_{cc}

Breit-Wigner parameterization

$$\delta m_{BW} = m_{T_{cc}} - m_{D^{*+}D^{0}}$$

= -273 ± 61 ± 5⁺¹¹₋₁₄ keV
 $\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38}$ keV

LHCb, Nature Phys18, 751-754 (2022)

A unitarised three body Breit-Wigner function

$$\delta m_U = m_{T_{cc}} - m_{D^{*+}D^0}$$

= -360 ± 40⁺⁴₋₀ keV
$$\Gamma_U = 48 \pm 2^{+0}_{-14} \text{ keV}$$

LHCb, Nature Commun. 13, 3351 (2022)

T_{cs} and $T_{c\overline{s}}$

Theoretical explanations

 $(3_q \otimes 3_{\overline{q}}^*)_{lc} \otimes (3_q \otimes 3_{\overline{q}}^*)_{lc} \to 1_{lc}$

$$(6_{qq} \otimes 6^*_{\overline{qq}})_{1c} \to 1_{1c}, (3_{\overline{qq}} \otimes 3^*_{qq})_{1c} \to 1_{1c}$$

Review

- H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rept. 639, 1 (2016)
- H.X. Chen, W. Chen, X. Liu, Y.R. Liu, and S.L. Zhu, Rept. Prog. Phys. 80, 076201 (2017)
- F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)
- Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019)
- N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen,
 C. E. Thomas, A. Vairo, and C.-Z. Yuan, Phys. Rept. 873, 1 (2020)
- H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, Rept. Prog. Phys. 86, 026201 (2023)
- M. Z. Liu, Y. W. Pan, Z. W. Liu, T. W. Wu, J. X. Lu, and L. S. Geng, Phys. Rept. 1108,1 (2025)

Formalism

Mass splitting model

$$H = \sum_{i} m_{i} + \sum_{i} \frac{\vec{p}_{i}^{2}}{2m_{i}} + \sum_{i < j} \frac{\vec{\lambda}_{i} \vec{\lambda}_{j}}{4} \left(\frac{\alpha_{s}}{r_{ij}} - \frac{3}{4} br_{ij} - \frac{8\pi\alpha_{s}}{3m_{i}m_{j}} S_{i} \cdot S_{j} e^{-\sigma^{2}r^{2}} \frac{\sigma^{3}}{\pi^{3/2}} \right)$$

$$H = \sum_{i} m_{i} + H_{\text{CMI}} = \sum_{i} m_{i} - \sum_{i < j} C_{ij} \lambda_{i} \cdot \lambda_{j} \sigma_{i} \cdot \sigma_{j}$$

m_i : the effective quark mass

Model I:
$$M_1 = \sum_i m_i + E_{\text{CMI}}$$

Upper limits

Hadron	Th	Ep	Th-Ep	Hadron	Th	Ep	Th-Ep
π	246.8	139.6	107.2	ρ	882.5	775.3	107.2
Κ	605.0	493.7	111.3	K^*	1003.9	891.8	112.1
D	1980.3	1869.7	110.6	D^*	2121.1	2010.3	110.8
D_s	2159.3	1968.4	191.0	D_s^*	2301.7	2010.3	291.4
η	3363.4	2983.9	379.5	J/ψ	3 <mark>4</mark> 76.5	3096.9	379.6
Σ	1185. <mark>7</mark>	1189.4	3.7	\sum^*	1379.3	1282.8	3.5
Ξ_c'	2616.3	2578.2	38.1	Ξ_c^*	2682.7	2645.1	37.6

Overestimated theoretical masses

Hadron $\langle H_{CMI} \rangle$ Hadron $\langle H_{CMI} \rangle$ C_{ij} N $-8C_{nn}$ $8C_{nn}$ $C_{nn} = 18.3$ Δ $\frac{8}{3}C_{nn} - \frac{32}{3}C_{ns}$ $\frac{8}{3}C_{nn} + \frac{16}{3}C_{ns}$ Σ^* $C_{ns} = 12.1$ Σ $\frac{8}{3}C_{nn} - \frac{32}{3}C_{cn}$ Σ_c^* $\frac{8}{3}C_{nn} + \frac{16}{3}C_{cn}$ Σ_c $C_{cn} = 4.0$ $\frac{8}{3}C_{ns} - \frac{16}{3}C_{cn} - \frac{16}{3}C_{cs}$ $\Xi_c^* = \frac{8}{3}C_{ns} + \frac{8}{3}C_{cn} + \frac{8}{3}C_{cs} \quad C_{cs} = 4.4$ Ξ_c' $\frac{16}{3}C_{c\bar{c}}$ $-16C_{c\bar{c}}$ J/ψ $C_{c\bar{c}} = 5.3$ η_c $\frac{16}{3}C_{c\bar{s}}$ $-16C_{c\bar{s}}$ D^*_{\circ} $C_{c\bar{s}} = 6.7$ D_{s} $-16C_{c\bar{n}}$ $\frac{16}{2}C_{c\bar{n}}$ $C_{c\bar{n}} = 6.6$ D D^* $8C_{ss}$ $C_{ss} = 6.5$ Ω $\frac{16}{3}C_{n\bar{n}}$ $-16C_{n\bar{n}}$ $C_{n\bar{n}} = 29.8$ π ρ $\frac{16}{3}C_{n\bar{s}}$ $-16C_{n\bar{s}}$ K^* $C_{n\bar{s}} = 18.7$ KВ $-16C_{b\bar{n}}$ B^* $\frac{16}{3}C_{b\bar{n}}$ $C_{b\bar{n}} = 2.1$ $\frac{16}{3}C_{b\bar{c}}$ B_c $-16C_{b\bar{c}}$ B_c^* $C_{b\bar{c}} = 3.3$ Bs $-16C_{b\bar{s}}$ B_s^* $\frac{16}{3}C_{b\bar{s}}$ $C_{b\bar{s}} = 2.3$ $\frac{16}{3}C_{b\bar{b}}$ $-16C_{b\bar{b}}$ Υ $C_{b\bar{b}} = 2.9$ η_b $\frac{8}{3}C_{nn} + \frac{16}{3}C_{bn}$ $\frac{8}{3}C_{nn} - \frac{32}{3}C_{bn}$ Σ_c^* Σ_{h} $C_{bn} = 1.3$ $\frac{8}{3}C_{ns} - \frac{16}{3}C_{bn} - \frac{16}{3}C_{bs} \qquad \Xi_b^* \qquad \frac{8}{3}C_{ns} + \frac{8}{3}C_{cn} + \frac{8}{3}C_{bs} \quad C_{bs} = 1.3$ Ξ_{h}^{\prime}

$$\frac{C_{cc}}{C_{c\bar{c}}} = \frac{C_{bb}}{C_{b\bar{b}}} = \frac{C_{bc}}{C_{b\bar{c}}} = \frac{C_{nn}}{C_{n\bar{n}}} \approx \frac{2}{3}$$

 $m_n = 361.8 \text{ MeV}, m_s = 542.4 \text{ MeV},$ $m_c = 1724.1 \text{ MeV}, m_b = 5054.4 \text{ MeV}.$

Mass splitting model

 $M = \left[M_{ref} - (E_{CMI})_{ref} \right] + E_{CMI}$

Model II: meson-meson threshold —> underestimated Lower limit

$$M = M_{X(4140)} - (E_{CMI})_{X(4140)} + E_{CMI} + \sum_{ij} n_{ij}(m_i - m_j)$$
$$\tilde{m} = M_{X(4140)} - (E_{CMI})_{X(4140)}$$
$$M = \tilde{m} + E_{CMI} + \sum_{ij} n_{ij} \Delta_{ij}$$

 $\Delta_{ij} = m_i - m_j$: the effective mass gap $\Delta_{bc} = 3340$.2 MeV, $\Delta_{cn} = 1280$.7 MeV, $\Delta_{sn} = 90.6$ MeV $\Delta_{cs} = 1180 .6 \text{ MeV}, \ \Delta_{bs} = 4520 .2 \text{ MeV}$ $\Delta_{cn} = \Delta_{cs} + \Delta_{sn}, \Delta_{bs} = \Delta_{bc} + \Delta_{cs}$

Hadron	Hadron	Δ_{bc}	Hadron	Hadron	Δ_{cn}	Hadron	Hadron	Δ_{sn}
$ \frac{B (B^*)}{B_s (B_s^*)} \\ \frac{B_c}{n_b} $	$ \begin{array}{c} D (D^*) \\ D_s (D^*_s) \\ \eta_c \\ B_c \end{array} $	3340.2 (3340.1) 3328.2 (3326.7) 3259.0 3117.7	$D (D^*)$ $D_s (D^*_s)$ $\eta_c (J/\psi)$ B_c	$ \begin{array}{c} \pi \ (\rho, \ \omega) \\ K \ (K^*) \\ D \ (D^*) \\ B \end{array} $	1356.4 (1357.6, 1350.2) 1280.7 (1282.6) 1095.9 (1095.3) 1014.6	$K (K^*)$ ϕ $D_s (D_s^*)$ $B_c (B_c^*)$	$\pi (\rho, \omega)$ K^* $D (D^*)$ $B (B^*)$	178.4 (178.1, 170.7) 175.9 102.7 (103.1) 90.6 (89.7)
$ \begin{array}{l} \Lambda_b \\ \Sigma_b \ (\Sigma_b^*) \\ \Sigma_b \\ \Xi_b \\ \Xi_b' \ (\Xi_b^*) \end{array} $	$\begin{array}{c} -c \\ \Lambda_c, \Sigma_c \\ \Sigma_c \ (\Sigma_c^*) \\ \Lambda_c \\ \Xi_c, \Xi_c' \\ \Xi_c' \ (\Xi_c^*) \end{array}$	3333.1, 3318.6 3331.1 (3329.9) 3345.6 3325.1, 3299.6 3323.9 (3323.2)	$\begin{array}{c} -c \\ \Lambda_c \\ \Sigma_c \ (\Sigma_c^*) \\ \Xi_c' \\ \Xi_c' \ (\Xi_c^*) \\ \Xi_c \end{array}$	Ν Ν (Δ) Λ Σ (Σ*) Λ, Σ	1347.5 1362.1 (1362.4) 1328.8 1318.6 (1319.8) 1303.3, 1293.0	$ \begin{array}{c} \Lambda \\ \Sigma (\Sigma^*) \\ \Xi (\Xi^*) \\ \Omega \end{array} $	$ \begin{array}{c} N\\ N(\Delta)\\ \Lambda\\ \Sigma(\Sigma^*)\\ \Xi^* \end{array} $	176.8 187.0 (186.2) 169.0 158.7 (159.3) 172.7
Ξ_b' Ω_b	Ξ_c Ω_c	3349.4 3313.6	$\Omega_c \ (\Omega_c^*)$	Ξ (Ξ*)	1295.9 (1273.0)	$\begin{array}{c} \Xi_c'\\ \Xi_c' \ (\Xi_c^*)\\ \Xi_c\\ \Omega_c\\ \Omega_c \ (\Omega_c^*)\\ \Xi_b'\\ \Xi_b' \ (\Xi_b^*) \end{array}$	$\begin{array}{c} \Lambda_c \\ \Sigma_c \ (\Sigma_c^*) \\ \Lambda_c, \ \Sigma_c \\ \Xi_c \\ \Xi_c' \ (\Xi_c^*) \\ \Lambda_b \\ \Sigma_b \ (\Sigma_b^*) \end{array}$	158.0 143.5 (143.5) 132.5, 118.0 161.6 136.0 (135.7) 148.8 136.3 (136.8)
η_b	η_c	3188.4	$\eta_c \stackrel{(J/\psi)}{\Xi_{cc}}$	$\pi (ho, \omega)$ N	1226.1 (1226.4, 1222.7) 1287.2	Ξ_b Ω_b Φ $\Xi (\Xi^*)$ Ω_c $\Omega_c (\Omega_c^*)$	$ \begin{array}{c} \Lambda_b, \bar{\Sigma}_b \\ \Xi_b, \Xi_b' \\ \rho, \omega \\ N (\Delta) \\ \Delta, \Sigma^* \\ \Lambda_c \\ \Sigma_c (\Sigma_c^*) \end{array} $	124.5, 112.0 150.1, 125.7 177.0, 173.3 172.9 (184.3) 180.4, 177.5 147.0 139.8, 139.6

J. Wu, X. Liu, Y. R. Liu, and S. L. Zhu Phys. Rev. D 99, 014037(2019)

Rearrangement decay

- 1. The decay Hamiltonian is described by a constant $H = \mathcal{C}$
- 2. The total width is equal to the sum of two-body rearrangement

decay widths $\,\Gamma_{total} \sim \Gamma_{sum}$

13

Results for $QQ\overline{qq}$, $Qq\overline{qq}$, and $QQ\overline{Q}\overline{q}$

 T^+_{cc}

$$M_{cc\overline{n}\overline{n}} = \widetilde{m} + E_{CMI} - 2\Delta_{sn}$$

Assume X(4140) to be the lowest $1^{++}cs\overline{cs}$

 $\mathcal{C}=7282.15~\mathrm{MeV}$

15

bbnn states

• The lowest $0(1^+) b b \overline{ud}$ is a stable tetraquark about 20 MeV below the $\overline{B}^*\overline{B}$ threshold Almost all theoretical studies favor this conclusion $T^{a}_{c\overline{s}0}(2900)$

Assume $T^{a}_{c\overline{s}0}(2900)$ to be the $1(0^{+})cn\overline{sn}$ $\mathcal{C}=13.577~\mathrm{GeV}$ $cn\bar{s}\bar{n}$ $D_s^*\eta'$ $I(J^P$ Mass Channels Γ D^*K^* $D_s^*\rho$ D_sη′ = 2918_{D^{*}_sρ,D^{*}K^{*},D^{*}_sω} (95.8, 340.4)(26.9, 94.8)435.23058.0 $1(2^+)$ 2971.3(4.2, 10.9)(73.1, 179.3)190.1 D^*K DK^* $D_s^* \rho$ $D_s^*\pi$ $D_s \rho$ D^*K^* $DK^*, D_s\rho, D_sQ$ 3082.1(71.1, 266.6)(0.0, 0.2)(4.5, 22.7)(22.5, 84.1)(0.8, 4.6)(9.3, 46.7)424.9(0.3, 2.0)(22.7, 103.6)(61.8, 181.3)381.4 $D_s^*\eta$ 3004.4(26.8, 80.9)(1.3, 7.5)(1.3, 6.1)2902.7(0.0, 0.0)(0.7, 4.2)(44.1, 166.0)(12.6, 2.7)(0.0, 0.2)(12.4, 45.5)218.52837.3295.1(1.3, -)(0.0, 0.0)(26.8, 80.2)(3.2, 16.5)(70.9, 198.4)(0.1, -)D_sη 2636.4(0.8, -(1.8, -)(1.5, -)(72.7, 258.8)310.3(10.7, 51.5)(4.4, -)0 DK

$$\begin{bmatrix} 2385.9 \\ 0.0, -) \\ D_s^* \rho \\ D_s \pi \\ D_s \pi$$

$\Gamma(D_s^*\rho): \Gamma(D_s\pi): \Gamma(D^*K^*): \Gamma(DK) \simeq 10.8: 1.0: 11.2: 3.9.$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} \omega & D^* K^* \\ 33.6 \\ 0.4 \end{bmatrix} \begin{bmatrix} (26.9, 94.8) \\ (73.1, 179.3) \end{bmatrix} \\ \begin{bmatrix} 0.0, 0.1 \\ 0.2, 0.8 \end{bmatrix} \\ \begin{bmatrix} 0.0, 0.1 \\ 0.2, 0.8 \end{bmatrix} \\ \begin{bmatrix} 0.4, 1.6 \\ 0.4, 1.6 \end{bmatrix}$	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & $	annels $D_s \omega$ $\left[\begin{array}{c} D_s \omega \\ (4.5, 22.5) \\ (22.7, 102.3) \end{array}\right]$	$\begin{bmatrix} D^*K^* \\ (22.5, 84.1) \\ (61.8, 181.3) \end{bmatrix}$	D^*K [(0.8, 4.6)] (1.3, 7.5)]		$\begin{bmatrix} 428.4 \\ 189.7 \end{bmatrix}$
$0(2^{+}) \begin{bmatrix} 3058.0\\2971.3 \end{bmatrix} \begin{bmatrix} 0(5.8,3)\\(4.2,1)\\0(1^{+}) \end{bmatrix} \begin{bmatrix} 3082.1\\3004.4\\2902.7\\2837.3 \end{bmatrix} \begin{bmatrix} (71.1,2)\\(26.8,3)\\(0,0,0)\\(1.3,3) \end{bmatrix}$	$ \begin{bmatrix} \omega & D^* K^* \\ 33.6 \\ 0.4 \end{bmatrix} \begin{bmatrix} (26.9, 94.8) \\ (73.1, 179.3) \end{bmatrix} \\ \begin{bmatrix} 0.0 \\ 0.8 \end{bmatrix} \begin{bmatrix} 0.0 \\ 0.0 \\ 0.4 \end{bmatrix} \begin{bmatrix} 0.0 \\ 0.2 \\ 0.4 \end{bmatrix} $	$\begin{bmatrix} D_{s}^{*}\eta' \\ (0.0, 0.0) \\ (0.2, -) \\ (0.2) \end{bmatrix}$	$\begin{bmatrix} D_s \omega \\ (4.5, 22.5) \\ (22.7, 102.3) \end{bmatrix}$	$\begin{bmatrix} D^*K^* \\ (22.5, 84.1) \\ (61.8, 181.3) \end{bmatrix}$	D^*K $\begin{bmatrix} (0.8, 4.6) \\ (1, 3, 7, 5) \end{bmatrix}$	DK^* $\begin{bmatrix} (9.3, 46.7) \\ (1, 2, 6, 1) \end{bmatrix}$	$\begin{bmatrix} 428.4 \\ 189.7 \end{bmatrix}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} (0.4, 10) \\ (0.4, 0.0) \\ (5, 7, -) \\ (46.7, -) \end{array} $	$ \begin{array}{c} (0.3, -) \\ (0.0, -) \\ (5.0, -) \\ (41.5, -) \end{array} $	$ \begin{array}{c} (44.1, 162.4) \\ (26.8, 77.1) \\ (1.8, -) \\ (0.0, -) \end{array} $	$ \begin{array}{c} (12.6, 2.7) \\ (0.1, -) \\ (1.5, -) \\ (1.4, -) \end{array} \right] $	$\begin{array}{c} (1.3, 1.5) \\ (0.0, 0.2) \\ (3.2, 16.5) \\ (72.7, 258.8) \\ (22.1, -) \end{array}$	$\begin{array}{c} (1.3, 6.1) \\ (12.4, 45.5) \\ (70.9, 198.4) \\ \hline (4.4, -) \\ \hline (1.7, -) \end{array}$	$ \begin{array}{c c} 376.5 \\ 212.3 \\ 292.0 \\ 258.8 \\ - \end{array} $
$0(0^{+}) \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & \\ \hline & 3149.7 & & & & & & & & & \\ \hline & 2917.9 & & & & & & & & & & \\ \hline & 2537.5 & & & & & & & & & & & \\ \hline & 2537.5 & & & & & & & & & & & & \\ \hline & 2214.3 & & & & & & & & & & & & & & \\ \hline & & & &$	$ \begin{bmatrix} 2 & 3 & 0 \\ (32,3) \\ (-3,$	$ \begin{array}{c} D_s \eta \\ \left[\begin{array}{c} (0.0, 0.1) \\ (0.4, 0.1) \\ (8.1, -) \\ (38.6, -) \end{array} \right] $	$ \begin{array}{c} D \\ K \\ \hline (46.3, 196.1) \\ (47.4, 56.9) \\ \hline (4.1, -) \\ (2.1, -) \end{array} $	$ \begin{array}{c} DK \\ (0.2, 1.7) \\ (3.1, 20.1) \\ (67.0, 297.1) \\ (29.6, -) \end{array} $			$ \begin{array}{c c} $

 $M_{cn\bar{s}\bar{n}} = \tilde{m} + E_{CMI} - \Delta_{sn} - \Delta_{cn}$

3150

2538

2214

 $D_s^*\pi$

 $D_s\pi$ D*K

 $1(0^{+})$

3082

2903

2636

2386

1+

3058

Mass(MeV)

2+

 0^{+}

$$\begin{array}{c} B^0 \rightarrow \bar{D}^0 D^+_s \pi^- \\ B^+ \rightarrow D^- D^+_s \pi^+ \end{array}$$

 $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.013$ GeV

$T^*_{cs0}(2870)$

- $T^*_{cs0}(2870)$ can be regarded as the highest $0(0^+)$ csnn
- The lowest $0(0^+)$ and the lowest $0(1^+)cs\overline{nn}$ is stable

The lowest $\mathbf{0}(\mathbf{0}^+)$ and lowest $\mathbf{0}(\mathbf{1}^+)bn\overline{sn}$ The lowest $\mathbf{0}(\mathbf{0}^+)$ and lowest $\mathbf{0}(\mathbf{1}^+)b\overline{snn}$

csss states

• There may exist a stable state with $J^P = 2^+$ for $cs\overline{ss}$ case

$Q Q \overline{Q} \overline{q}$ states

$$\begin{split} M_{cc\bar{c}\bar{n}} &= \tilde{m} + \langle H_{CMI} \rangle + \Delta_{cs} - \Delta_{sn}, \\ M_{cc\bar{c}\bar{s}} &= \tilde{m} + \langle H_{CMI} \rangle + \Delta_{cs}, \\ M_{cc\bar{b}\bar{n}} &= \tilde{m} + \langle H_{CMI} \rangle + \Delta_{bs} - \Delta_{sn}, \\ M_{cc\bar{b}\bar{s}} &= \tilde{m} + \langle H_{CMI} \rangle + \Delta_{bs}, \\ M_{bb\bar{c}\bar{n}} &= \tilde{m} + \langle H_{CMI} \rangle + 2\Delta_{bs} - \Delta_{cn}, \\ M_{bb\bar{c}\bar{s}} &= \tilde{m} + \langle H_{CMI} \rangle + \Delta_{bc} + \Delta_{bs}, \\ M_{bb\bar{b}\bar{b}\bar{n}} &= \tilde{m} + \langle H_{CMI} \rangle + 2\Delta_{bs} + \Delta_{bc} - \Delta_{cn}, \\ M_{bb\bar{b}\bar{s}} &= \tilde{m} + \langle H_{CMI} \rangle + 2\Delta_{bs} + \Delta_{bc} - \Delta_{cn}, \\ M_{bb\bar{b}\bar{s}} &= \tilde{m} + \langle H_{CMI} \rangle + 2\Delta_{bc} + \Delta_{bs}, \\ M_{bc\bar{c}\bar{n}} &= M_{cc\bar{b}\bar{n}}, \quad M_{bc\bar{c}\bar{s}} &= M_{cc\bar{b}\bar{s}}, \\ M_{bc\bar{b}\bar{n}} &= M_{bb\bar{c}\bar{n}}, \quad M_{bc\bar{b}\bar{s}} &= M_{bb\bar{c}\bar{s}}. \end{split}$$

No stable $\mathbf{Q}\mathbf{Q}\overline{\mathbf{Q}}\overline{\mathbf{q}}$ state is found.

The mass spectrum of thiply theavy Most theoretical studies are in tetraquark ranges from 5.2 GeV-15.5 GeV agreement with this conclusion

Mass Γ_{sum} Channels $cc\bar{c}\bar{n}$ $J/\psi D^*$ 2^{+} 5372.0 (33.3, 168.2)168.2 $\eta_c D^*$ $J/\psi D^*$ $J/\psi D$ (49.6, 254.5)(2.9, 17.6)280.0(1.3, 8.0)5382.5 1^{+} 5309.8189.1(0.2, 0.8)(11.4, 66.0)(21.8, 122.3)240.85242.4(0.2, 0.7)(29.0, 153.6)(17.0, 86.4) $J/\psi D^*$ $\eta_c D$

(0.1, 0.8)

(41.6, 247.6)

QQ

(54.9, 302.0)

(3.5, 10.5)

5435.5

5191.1

 0^{+}

states

Similar features are found in the $cc\overline{cs}$, $cc\overline{b}\overline{n}$, $cc\overline{b}\overline{s}$, $bb\overline{cn}$, $bb\overline{cs}$, $bb\overline{b}\overline{n}$, and $bb\overline{b}\overline{s}$ states

302.8

258.1

J^P	Mass	Channels							
				$bcar{c}ar{n}$					
2^{+}	$\left[\begin{array}{c}8713.9\\8696.2\end{array}\right]$	$\begin{bmatrix} B_c^* D^* \\ (97.3, 245.8) \\ (2.1, 5.3) \\ \bar{B}_c^* D^* \end{bmatrix}$	$\begin{bmatrix} B^* J/\psi \\ (21.8, 55.2) \\ (77.7, 191.3) \\ \bar{B}_c^* D \end{bmatrix}$	$\bar{B}_c D^*$	$ar{B}^*J/\psi$	$ar{B}^*\eta_c$	$ar{B}_s J/\psi$	$\left[\begin{array}{c} 301.1\\196.6\end{array}\right]$	
1+	8719.4 8698.4 8665.3 8633.9 8602.3 8555.9	$\left[\begin{array}{c} (78.2, 199.0)\\ (19.4, 48.1)\\ (2.1, 4.9)\\ (0.3, 0.6)\\ (0.5, 1.0)\\ (0.1, 0.2) \end{array}\right]$	$\left[\begin{array}{c} (0.1, 0.2) \\ (1.3, 3.8) \\ (1.5, 4.4) \\ (1.0, 2.8) \\ (26.1, 68.7) \\ (69.5, 173.3) \end{array}\right]$	$\left[\begin{array}{c} (2.1, 5.7) \\ (7.6, 20.8) \\ (16.7, 43.9) \\ (64.7, 163.6) \\ (8.4, 20.4) \\ (0.4, 0.8) \end{array}\right]$	$\left[\begin{array}{c} (17.8, 45.6) \\ (79.1, 195.6) \\ (1.2, 2.8) \\ (0.3, 0.8) \\ (0.9, 1.7) \\ (0.4, 0.8) \end{array}\right]$	$\left[\begin{array}{c}(1.2,3.7)\\(1.0,2.8)\\(3.8,10.6)\\(0.1,0.2)\\(51.0,131.6)\\(42.8,102.1)\end{array}\right]$	$\left[\begin{array}{c} (10.3, 28.2)\\ (2.1, 5.6)\\ (43.6, 111.1)\\ (38.4, 92.8)\\ (4.8, 10.6)\\ (0.9, 1.7)\end{array}\right]$	$\begin{bmatrix} 282.3\\ 276.5\\ 177.5\\ 260.6\\ 233.9\\ 278.9 \end{bmatrix}$	
		$\bar{B}^*_c D^*$	$\bar{B}_c D$	$\bar{B}^* J/\psi$	$\bar{B}\eta_c$				
0+	$\begin{bmatrix} 8746.8 \\ 8668.0 \\ 8572.2 \\ 8478.1 \end{bmatrix}$	$\left[\begin{array}{c} (61.5, 161.5)\\ (36.8, 87.5)\\ (2.4, 4.8)\\ (0.1, 0.1) \end{array}\right]$	$\begin{bmatrix} (0.1, 0.2) \\ (1.2, 3.6) \\ (23.4, 65.3) \\ (75.9, 190.2) \end{bmatrix}$	$\left[\begin{array}{c} (49.3, 130.8)\\ (45.2, 106.1)\\ (4.4, 8.2)\\ (1.3, 1.5) \end{array}\right]$	$\left[\begin{array}{c} (0.3, 0.8)\\ (3.6, 10.8)\\ (60.8, 161.9)\\ (35.4, 80.0) \end{array}\right]$			$\begin{bmatrix} 293.2\\ 208.0\\ 240.2\\ 271.8 \end{bmatrix}$	

Twelve states: 8.48 GeV ~ 8.75GeV

Similar features are found in the $bc\overline{c}\overline{s}$, $bc\overline{b}\overline{n}$, and $bc\overline{b}\overline{s}$ states

- 1. $QQ\overline{qq}$ states, $T_{cc}^+(3875)$: the lowest $I(J^P) = O(1^+)cc\overline{ud}$, Stable: the lowest $O(1^+)bb\overline{ud}$.
- 2. $Qq\overline{qq}$ states, $T^a_{c\overline{s}0}(2900)^{++/0}$: $1(0^+)cn\overline{sn}$, $T^*_{cs0}(2870)$: $0(0^+)c\overline{snn}$. Stable: the lowest $0(1^+)cn\overline{sn}$, the lowest $0(0^+)$ and $0(1^+)c\overline{snn}$, the lowest $0(0^+)$ and $0(1^+)bn\overline{sn}$, the lowest $0(0^+)$ and $0(1^+)b\overline{snn}$.
- 3. $QQ\overline{Q}\overline{q}$ states, no stable tetraquark state is found.

Thank you for your attention !