Form factors in semileptonic decay $D_s \rightarrow \phi l \nu$ from lattice QCD

Gaofeng Fan (樊高峰)^{1,2}

In Collaboration with: Zhaofeng Liu (刘朝峰)², Yu Meng (孟雨)³, Lei Zhang (张雷)¹

¹Nanjing University, ²IHEP, ³Zhengzhou University

Based on arXiv:250x.xxxx

第八届强子谱和强子结构研讨会

Outline

- Motivations
- Introduction to lattice QCD
- Lattice set up
- Method
- Results
- Summary

Motivations

- Semi-leptonic decays offer an ideal place to deeply understand hadronic transitions in the nonperturbative region of QCD, and can help to explore the weak and strong interactions in charm sector
- Vector meson decay makes this transition notoriously difficult to model due to theoretical complexity
- Combining with the experimental data, the CKM matrix element can be extracted, and it helps to test unitarity of CKM matrix and search for new physics beyond SM
- Calculating branching fractions helps to test µ e lepton flavor universality
 SM parameter

$$\frac{\mathrm{d}\Gamma(D_s \to \phi \ell \nu)}{\mathrm{d}q^2} = \frac{G_{\mathsf{F}}^2 |\mathbf{v}_{cs}|^2 |\mathbf{p}_{\phi}| q^2}{96\pi^3 M_{D_s}^2} \left(1 - \frac{m_{\ell}^2}{q^2}\right)^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2}\right) \left(|H_+|^2 + |H_-|^2 + |H_0|^2\right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2\right]$$

2025/7/13

non-perturbative

Motivations

• Status of theoretical and experimental studies

A precise lattice calculation is important!

• Provide lattice QCD input to investigate the SU(3) symmetry (by combining with $D \rightarrow K^* l \nu$ calculation)

Introduction to lattice QCD

• Path integral in discrete Euclidean space

$$\begin{split} Z &= \int [dU] \prod_{f} [dq_{f}] [d\bar{q}_{f}] e^{-S_{g}[U] - \sum_{f} \bar{q}_{f}(D[U] + m_{f})q_{f}} \\ Z &= \int [dU] e^{-S_{g}[U]} \prod_{f} \det(D[U] + m_{f}) \end{split}$$

 Expectation values of gauge-invariant operators, also known as "correlation functions"

$$\left\langle \mathcal{O}(U,q,\bar{q})\right\rangle = (1/Z) \int [dU] \prod_{f} [dq_{f}] [d\bar{q}_{f}] \mathcal{O}(U,q,\bar{q}) e^{-S_{g}[U] - \sum_{f} \bar{q}_{f}(D[U] + m_{f})q_{f}}$$

• Monte-Carlo method and data analysis

Lattice set up

- (2+1)-flavor Wilson-clover gauge ensembles [CLQCD, PRD 111, 054504 (2025)]
- Computer resources: "SongShan" supercomputer at Zhengzhou University

Ensemble	C24P29	C32P23	F32P30	F48P21	H48P32
a (fm)	0.10524(05)(62)	0.10524(05)(62)	0.07753(03)(45)	0.07753(03)(45)	0.05199(08)(31)
$\widetilde{m}_{s}^{\mathrm{b}}$	-0.2400	-0.2400	0.2050	0.2050	0.1700
\widetilde{m}_{I}^{b}	-0.2770	-0.2790	0.2295	0.2320	0.1850
$\widetilde{m}_{c}^{\mathrm{b}}$	0.4159(07)	0.4190(07)	0.1974(05)	0.1997(04)	0.0551(07)
$L^3 \times T$	$24^{3} \times 72$	$32^{3} \times 64$	$32^3 \times 96$	$48^{3} \times 96$	$48^{3} \times 144$
$N_{\rm cfg} imes N_{ m src}$	450 × 72	200×64	180×96	150×96	150×144
m_{π} (MeV)	292.3(1.0)	227.9(1.2)	300.4(1.2)	207.5(1.1)	316.6(1.0)
t	2 - 17	2 - 20	4 – 22	4 - 26	8 - 30
Z_V^s	0.85184(06)	0.85350(04)	0.86900(03)	0.86880(02)	0.88780(01)
Z_V^c	1.57353(18)	1.57644(12)	1.30566(07)	1.30673(04)	1.12882(11)
Z_A/Z_V	1.07244(70)	1.07375(40)	1.05549(54)	1.05434(88)	1.03802(28)

Method (correlation function formulism)

• 2-point correlation function (2pt),

$$C^{(2)}(\vec{p},t) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle \mathcal{O}_h(\vec{x},t)\mathcal{O}_h^{\dagger}(0) \rangle$$

• 3-point correlation function (3pt),

$$C_{\mu\nu}(\vec{x}, t, t_s) = \langle \mathcal{O}_{\phi_{\nu}}(t) J^{W}_{\mu}(0) \mathcal{O}^{\dagger}_{D_s}(-t_s) \rangle$$

= $\langle \bar{s}(t) \gamma_{\nu} s(t) \bar{s}(0) \gamma_{\mu} (1 - \gamma_5) c(0) \bar{c}(-t_s) \gamma_5 s(-t_s) \rangle$
= $\langle \operatorname{Tr}[\gamma_5 \gamma_5 S^{\dagger}_{-s}(t, -t_s) \gamma_5 \gamma_{\nu} S_s(t, 0) \gamma_{\mu} (1 - \gamma_5) S_c(0, -t_s)] \rangle$

Method (scalar function)

• The parameterization for $P \rightarrow V$ semileptonic matrix element

$$\langle \phi_{\sigma}\left(\vec{p}\right) | J^{W}_{\mu}\left(0\right) | D_{s}\left(p'\right) \rangle = \frac{F_{0}\left(q^{2}\right)}{Mm} \epsilon_{\mu\sigma\alpha\beta} p'^{\alpha} p^{\beta} + F_{1}\left(q^{2}\right) \delta_{\mu\sigma} + \frac{F_{2}\left(q^{2}\right)}{Mm} p_{\mu} p'_{\sigma} + \frac{F_{3}\left(q^{2}\right)}{M^{2}} p'_{\mu} p'_{\sigma}$$

$$\langle \phi\left(\varepsilon,\vec{p}\right) | J^{W}_{\mu}\left(0\right) | D_{s}\left(p'\right) \rangle = \varepsilon^{*}_{\nu} \varepsilon_{\mu\nu\alpha\beta} p'_{\alpha} p_{\beta} \frac{2V}{m+M} + (M+m) \varepsilon^{*}_{\mu} A_{1} + \frac{\varepsilon^{*} \cdot q}{M+m} \left(p+p'\right)_{\mu} A_{2} - 2m \frac{\varepsilon^{*} \cdot q}{Q^{2}} q_{\mu} \left(A_{0} - A_{3}\right)$$

- Correlation functions —> Scalar functions —> Form factors
 - $\langle \phi_{\sigma}\left(\vec{p}\right) | J^{W}_{\mu}\left(0\right) | D_{s}\left(p'\right) \rangle \qquad \qquad \tilde{\mathcal{I}}_{j} \qquad \qquad V, A_{0}, A_{1}, A_{2}$
- Relationship with the form factor

$$V = \frac{(m+M)}{2mM}F_{0},$$

$$A_{1} = \frac{F_{1}}{M+m},$$

$$A_{2} = \frac{M+m}{2mM^{2}}(MF_{2}+mF_{3}),$$

$$A_{0} - A_{3} = Q^{2}\left(\frac{F_{2}}{4m^{2}M} - \frac{F_{3}}{4mM^{2}}\right).$$

 A_3 is not an independent form factor

$$A_{3}\left(q^{2}\right)=\frac{M+m}{2m}A_{1}\left(q^{2}\right)-\frac{M-m}{2m}A_{2}\left(q^{2}\right)$$

 A_0 is then

$$A_0(q^2) = \frac{F_1}{2m} + \frac{m^2 - M^2 + Q^2}{4m^2M}F_2 + \frac{m^2 - M^2 - Q^2}{4mM^2}F_3$$

 $A_0(0) = A_3(0)$ is automatically perserved

Method (scalar function)

- A similar scalar function scheme has been used for high-precision calculation
 - $\Gamma(\eta_c \to 2\gamma) = 6.67(16)_{\text{stat}}(6)_{\text{syst}} \text{ keV}$
 - $\Gamma(D_s^* \rightarrow \gamma D_s) = 0.0549(54) \text{ keV}$
 - $\operatorname{Br}(J/\psi \to Dev_e) = 1.21(11) \times 10^{-11}$ $\operatorname{Br}(J/\psi \to D\mu v_{\mu}) = 1.18(11) \times 10^{-11}$ $\operatorname{Br}(J/\psi \to D_s ev_e) = 1.90(8) \times 10^{-10}$ $\operatorname{Br}(J/\psi \to D_s \mu v_{\mu}) = 1.84(8) \times 10^{-10}$
 - $Br(J/\psi \rightarrow \gamma \eta_c) = 2.49(11)_{lat}(5)_{exp}\%$

[Y. M et al, <u>Science Bulletin 68, 1880 (2023)</u>]

[Y. M et al, PRD 109, 074511 (2024)]

[Y. M et al, PRD 110, 074510 (2024)]

[Y. M et al, PRD 111, 014508 (2025)]

Results (2-point function fitting)

• Least χ^2 fitting considering covariance matrix between configurations and time

fit function for
$$D_s$$
 is $C^{(2)}(\vec{p},t) = \frac{Z_h^2}{2E_h} \left(e^{-E_h t} + e^{-E_h(T-t)}\right)$

• There should be a plateau when meson ground states are dominant

Results (2-point function fitting)

• Least χ^2 fitting considering covariance matrix between configurations and time

fit function for
$$\phi$$
 is $C^{(2)}(\vec{p},t) = \left(-1 - \frac{|\vec{p}|^2}{3m_h^2}\right) \frac{Z_h^2}{2E_h} \left[e^{-E_h t} + e^{-E_h(T-t)}\right]$

• There should be a plateau when meson ground states are dominant

Results (dispersion relation)

- We checked the dispersion relation of **D**_s meson at different momenta
- Use a discrete dispersion relation as the fitting function

$$4 \sinh^2 \frac{E_h}{2} = 4 \sinh^2 \frac{m_h}{2} + \mathcal{Z}_{latt}^h \cdot 4 \sum_i \sin^2 \frac{p_i}{2} \qquad \mathcal{Z}_{latt} \text{ is } 1.0407(54), 1.0447(80), 1.0384(72), 1.032(10), 1.029(10)$$

Results (dispersion relation)

- We checked the dispersion relation of ϕ meson at different momenta
- Use a discrete dispersion relation as the fitting function

$$4 \sinh^2 \frac{E_h}{2} = 4 \sinh^2 \frac{m_h}{2} + \mathcal{Z}_{latt}^h \cdot 4 \sum_i \sin^2 \frac{p_i}{2} \qquad \mathcal{Z}_{latt} \text{ is } 1.024(15), 0.988(26), 1.023(15), 1.026(23), 1.045(21)$$

Results (form factor)

• The results have been multiplied by the renormalization constant, data point errors from jackknife analysis

Results (global fit)

• Extrapolate results to the physical pion mass and continuum limit using *z*-expansion

$$z(q^{2}, t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad V(q^{2}, a, m_{\pi}) = \frac{1}{1 - q^{2}/m_{D_{s}}^{2}} \sum_{i=0}^{2} (c_{i} + d_{i}a^{2}) \left[1 + f_{i} \left(m_{\pi}^{2} - m_{\pi,\text{phys}}^{2}\right) + g_{i} \left(m_{\pi}^{2} - m_{\pi,\text{phys}}^{2}\right)^{2}\right] z^{i}}$$
where $t_{+} = (m_{D_{s}} + m_{\phi})^{2}$, $t_{0} = 0$

$$M_{0,1,2}(q^{2}, a, m_{\pi}) = \frac{1}{1 - q^{2}/m_{D_{s1}}^{2}} \sum_{i=0}^{2} (c_{i} + d_{i}a^{2}) \left[1 + f_{i} \left(m_{\pi}^{2} - m_{\pi,\text{phys}}^{2}\right) + g_{i} \left(m_{\pi}^{2} - m_{\pi,\text{phys}}^{2}\right)^{2}\right] z^{i}}$$

$$m_{\pi,\text{phys}}^{2} = 135.0 \text{ MeV}/c^{2}, m_{D_{s}^{*}} = 2112.2 \text{ MeV}/c^{2}, m_{D_{s1}} = 2459.5 \text{ MeV}/c^{2}$$

$$A_0(0) - A_3(0) = -0.005(27)$$
, consistent with zero

Results (*H* form factor)

$$H_{\pm}(q^{2}) = (M+m)A_{1}(q^{2}) \mp \frac{2Mp_{K^{*}}}{M+m}V(q^{2}),$$

$$H_{0}(q^{2}) = \frac{1}{2M\sqrt{q^{2}}} \times \left[(M^{2}-m^{2}-q^{2})(M+m)A_{1}(q^{2}) - 4\frac{M^{2}p_{K^{*}}^{2}}{M+m}A_{2}(q^{2}) \right].$$

[HPQCD, PRD 90, 074506 (2014)]

using *z*-expansion

Results (differential decay width)

 Differential decay width using z-expansion, where the lepton mass is neglected [Rev. Mod. Phys 67, 893 (1995)]

Results

• Summary of preliminary results (form factor)

single pole

$$F(q^{2}, a, m_{\pi}) = \frac{1}{1 - q^{2}/h^{2}} (c + da^{2}) \left[1 + f(m_{\pi}^{2} - m_{\pi, phys}^{2}) + g(m_{\pi}^{2} - m_{\pi, phys}^{2})^{2} \right]$$
modified pole

$$F(q^{2}, a, m_{\pi}) = \frac{1}{(1 - q^{2}/m_{pole}^{2})(1 - \alpha q^{2}/m_{pole}^{2})} (c + da^{2}) \left[1 + f(m_{\pi}^{2} - m_{\pi, phys}^{2}) + g(m_{\pi}^{2} - m_{\pi, phys}^{2})^{2} \right]$$

Theory					Theory				
CQM	Phys. Rev. D 62, 014006 (2000)		•	1.72	CQM	Phys. Rev. D 62, 014006 (2000)		•	0.73
ΗΜχΤ	Phys. Rev. D 72, 034029 (2005)		•	1.80	ΗΜχΤ	Phys. Rev. D 72, 034029 (2005)	•		0.52
HQEFT	Int. J. Mod. Phys. A 21, 6125 (2006)			$1.37^{+0.024}_{-0.021}$	HQEFT	Int. J. Mod. Phys. A 21, 6125 (2006)	٠		$0.53\substack{+0.010\\-0.006}$
CLFQM	J. Phys. G 39, 025005 (2012)	•		1.42	CLFQM	J. Phys. G 39, 025005 (2012)		•	0.86
LQCD	Phys. Rev. D 90, 074506 (2014)	H	•	1.72 ± 0.21	LQCD	Phys. Rev. D 90, 074506 (2014)	H	● -(0.74 ± 0.12
CCQM	Phys. Rev. D 98, 114031 (2018)	⊢ ●−		1.34 ± 0.27	CCQM	Phys. Rev. D 98, 114031 (2018)			0.99 ± 0.20
LFQM	Eur. Phys. J. C 79, 422 (2019)		•	1.61	LFQM	Eur. Phys. J. C 79, 422 (2019)		•	0.86
RQM	Phys. Rev. D 101, 013004 (2020)			1.56	RQM	Phys. Rev. D 101, 013004 (2020)		•	0.77
SCI	Eur. Phys. J. C 82, 889 (2022)		•	1.64	SCI	Eur. Phys. J. C 82, 889 (2022)		•	0.72
LCHO	arXiv:2505.15014			$1.517_{-0.015}^{+0.011}$	LCHO	arXiv:2505.15014		H	$0.945^{+0.047}_{-0.064}$
LQCD	This work (z – expansion)	ŀ	<mark>e</mark> l	1.636 ± 0.050	LQCD	This work (z – expansion)	1		0.730 ± 0.044
LQCD	This work (single pole)		H	1.629 ± 0.044	LQCD	This work (single pole)			0.732 ± 0.040
LQCD	This work (modified pole)		•	1.642 ± 0.044	LQCD	This work (modified pole)		lei	0.734 ± 0.041
Experiment								•••••••••••••••••••••••••••••••••••••••	
BABAR	Phys. Rev. D 78, 051101 (2008)		н	$1.807 \pm 0.046 \pm 0.065$	BABAR	Phys. Rev. D 78, 051101 (2008)		H	$0.816 \pm 0.036 \pm 0.030$
BESIII	JHEP 12, 072 (2023)	H		$1.58 \pm 0.17 \pm 0.02$	BESIII	JHEP 12, 072 (2023)	H	•	$0.71 \pm 0.14 \pm 0.02$
PDG	Phys. Rev. D 110, 030001 (2024)		H	1.76 ± 0.07	PDG	Phys. Rev. D 110, 030001 (2024)		H	0.83 ± 0.08
-3	-2 -1 0	1	2	3 4	-3	-2 -1 0		1	2 3
$r_V (D_s \rightarrow \phi l v)$			$r_2 (D_s \rightarrow \phi v)$						

Results

• Summary of preliminary results (branching fraction)

PDG $|V_{cs}|$ as input

$$\frac{\mathrm{d}\Gamma(D_s \to \phi \ell \nu)}{\mathrm{d}q^2} = \frac{G_{\mathsf{F}}^2 |V_{cs}|^2 \left| \mathbf{p}_{\phi} \right| q^2}{96\pi^3 M_{D_s}^2} \left(1 - \frac{m_{\ell}^2}{q^2} \right)^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_-|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_-|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) + \frac{3m_{\ell}^2}{2q^2} |H_t|^2 \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(|H_+|^2 + |H_0|^2 \right) \right]^2 \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left(1 + \frac{m_{\ell}^2}{2q^2} \right) \right]^2 \left[\left(1 + \frac{m_{\ell}^2}{2q^2} \right) \left($$

${\cal B}(D_s o \phi \ell u) imes 10^{-2}$	e channel	μ channel	$\mathcal{R}_{\mu/e}$
z-expansion	2.61(15)	2.46(13)	0.9431(25)
single pole	2.56(10)	2.40(10)	0.9422(23)
modified pole	2.55(10)	2.41(10)	0.9428(24)
PDG	2.34(12)	2.24(11)	0.957(68)

Summary

- Dispersion relations of D_s meson and ϕ meson are calculated
- Form factors on five lattice sets with different q^2 are calculated
- Extrapolate form factors to the physical pion mass and continuum limit
- Differential decay width and branching fraction results are calculated
- Preliminary work on $D \rightarrow K^* l \nu$ form factors are ongoing

Thank you for your attention!