Unraveling *K*(1690) **as a pseudoscalar** *udd̄s* **tetraquark state**

报告人:张锦鹏 SUN YAT-SEN UNIVERSITY

Based on arxiv: 2507.05726 张锦鹏,陈绪梁,欧阳梓熙,俞祥,陈伟,吴佳俊

第八届强子谱与强子结构研讨会 7.13

QCD and exotic hadron states

•

- Hadron can be classified as mesons and baryons.
- QCD allows existence of exotic structures. Glueball, hybrid, tetraquark...

PLB, 205(2-3): 397-400. PLB, 313(1-2): 276-282. PRL, 129(19), 192002.

Exotic quantum number ----- $J^{PC}: \pi_1(1400), \pi_1(1600), \eta_1(1855) \dots$

A crypto-exotic $J^P = 0^-$ state

QCD Sum Rules

Quark-gluon level: Operator product expansion (OPE) $\Pi(q^2) = \sum C_n(q^2) \langle \mathcal{O}_n \rangle$

Start from two-point correlation function $\Pi(q^2) = i \int d^4x \, e^{iqx} \langle 0|T[J(x)J^+(0)]|0\rangle$ Hadron level: Dispersion relation and $\rho(q^2) = f_X^2 \delta(q^2 - m^2) + \cdots$

Mass *m* and decay constant f_X

<<<

Quark-hadron duality, Boral transform

$$f_X^2 e^{-m^2/M_B^2} = \int_0^{s_0} \rho(s) e^{-s/M_B^2} ds$$

4

$K(1690) - pseudoscalar Tetraquark <math>uq\bar{q}\bar{s}$?

- There exist 10 $J^P = 0^-$ tetraquark currents
- Up to dimension-8: $\langle \bar{q}q \rangle$, $\langle g^2 G^2 \rangle$, $\langle \bar{q}q \rangle^2$, $\langle \bar{q}Gq \rangle$, $\langle g^3 f G^3 \rangle$ $\langle \bar{q}GDq \rangle$, $\langle \bar{q}(DG)q \rangle$, $\langle \bar{q}q \rangle \langle g^2 G^2 \rangle$, $\langle \bar{q}q \rangle \langle \bar{q}Gq \rangle$

Convergence $\left| \frac{\Pi_{D=0}}{\Pi} \right|$

$$\left|\frac{\Pi_{D=6}(M_B^2)}{\Pi_{\text{pert}}(M_B^2)}\right| \leqslant 25\%, \left|\frac{\Pi_{D=8}(M_B^2)}{\Pi_{\text{pert}}(M_B^2)}\right| \leqslant 10\%.$$

Pole Contribution

$$\frac{L_0(s_0, M_B^2)}{L_0(\infty, M_B^2)} \ge 10\%$$

 $6_{F} \otimes \bar{6}_{F}(S) \begin{cases} S_{6} = u_{a}^{T} C d_{b} (\bar{d}_{a} \gamma_{5} C \bar{s}_{b}^{T} + \bar{d}_{b} \gamma_{5} C \bar{s}_{a}^{T}) \\ V_{6} = u_{a}^{T} C \gamma_{5} d_{b} (\bar{d}_{a} C \bar{s}_{b}^{T} + \bar{d}_{b} C \bar{s}_{a}^{T}) \\ T_{3} = u_{a}^{T} C \sigma_{\mu\nu} d_{b} (\bar{d}_{a} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{b}^{T} - \bar{d}_{b} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{a}^{T}) \\ \bar{3}_{F} \otimes 3_{F}(A) \end{cases} \begin{cases} S_{3} = u_{a}^{T} C d_{b} (\bar{d}_{a} \gamma_{5} C \bar{s}_{b}^{T} - \bar{d}_{b} \gamma_{5} C \bar{s}_{a}^{T}) \\ V_{3} = u_{a}^{T} C \gamma_{5} d_{b} (\bar{d}_{a} C \bar{s}_{b}^{T} - \bar{d}_{b} C \bar{s}_{a}^{T}) \\ T_{6} = u_{a}^{T} C \sigma_{\mu\nu} d_{b} (\bar{d}_{a} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{b}^{T} + \bar{d}_{b} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{a}^{T}) \\ T_{6} = u_{a}^{T} C \sigma_{\mu\nu} d_{b} (\bar{d}_{a} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{b}^{T} + \bar{d}_{b} \sigma_{\mu\nu} \gamma_{5} C \bar{s}_{a}^{T}) \\ P_{3} = u_{a}^{T} C \gamma_{\mu} d_{b} (\bar{d}_{a} \gamma_{\mu} C \bar{s}_{b}^{T} - \bar{d}_{b} \gamma_{\mu} C \bar{s}_{a}^{T}) \\ P_{6} = u_{a}^{T} C \gamma_{\mu} \gamma_{5} d_{b} (\bar{d}_{a} \gamma_{\mu} C \bar{s}_{b}^{T} + \bar{d}_{b} \gamma_{\mu} C \bar{s}_{a}^{T}) \\ A_{3} = u_{a}^{T} C \gamma_{\mu} d_{b} (\bar{d}_{a} \gamma_{\mu} \gamma_{5} C \bar{s}_{b}^{T} - \bar{d}_{b} \gamma_{\mu} C \bar{s}_{a}^{T}) \end{cases}$

$\langle g^3 f G^3 \rangle$ in QCD Sum Rules

 $\langle g^2 G^2 \rangle$

 $\langle g^3 f G^3 \rangle$:

- Vacuum condensates are important in QCDSR. $\langle \bar{q}q \rangle$, $\langle g^2 G^2 \rangle$, $\langle \bar{q}q \rangle^2$, $\langle \bar{q}Gq \rangle$, $\langle g^3 f G^3 \rangle$...
- Tri-gluon condensate $\langle g^3 f G^3 \rangle$ is usually neglected.

PLB 110 (1982) 476 NPB 213 (1983) 285–304 CPC 45 (9) (2021) 093103.

- Its contribution is unimportant in systems with heavy quarks.
- Complexity: too many diagrams. There exist 7 diagrams in LO of $\langle g^3 f G^3 \rangle$ diagrams of $\langle g^3 f G^3 \rangle > \langle \bar{q}q \rangle + \langle g^2 G^2 \rangle + \langle \bar{q}q \rangle^2 + \langle \bar{q}Gq \rangle$

 $S_{\langle GGG\rangle}^{ij}(x) = \frac{-\mathrm{i}\delta_{ij}\langle g^3 f G^3 \rangle \Gamma\left(\frac{d}{2} - 2\right) x}{9216d\pi^{d/2}(-x^2)^{d/2-3}}$

• Unavoidable IR divergence:

111

000

6

IR safety of $\langle g^3 f G^3 \rangle$ **in QCD Sum Rules**

• IR safety for the single quark propagator. (ignore $g^4 \langle \bar{q}q \rangle^2$)

$$\frac{DG}{2} = \frac{-i\delta_{ij} \langle g^3 f G^3 \rangle \Gamma(\frac{d}{2} - 1) \not x}{1728d(d + 2)\pi^{d/2} (-x^2)^{d/2 - 3}}$$

• IR safety for the two different quark propagators.

Must be calculated in d-dimensional ! Propagator and condensate.

The LO of $\langle g^3 f G^3 \rangle$ can be fully calculated.

The impact of $\langle g^3 f G^3 \rangle$

The impact of $\langle g^3 f G^3 \rangle$

• Take current P_6 as another example.

 $\langle g^3 f G^3 \rangle$ provides significant contribution in light tetraquark systems!

9

Results for $ud\bar{d}\bar{s}$

• Uncertainty is from s_0 , condensates and m_s .

Currents	$s_0(\pm 0.2\mathrm{GeV}^2)$	$M_B^2 ({ m GeV}^2)$	m (GeV)	PC(%)
<i>P</i> ₆	3.3	1.14 ~ 1.35	1.62 ± 0.10	> 15
<i>P</i> ₃	3.8	1.28 ~ 1.50	1.72 ± 0.10	> 20
V_3	3.3	1.42 ~ 1.62	1.60 ± 0.16	> 10
<i>A</i> ₃	2.8	0.95 ~ 1.20	1.48 ± 0.20	> 10
T_6	2.4	0.75 ~ 1.10	1.36 ± 0.05	> 15
T_3	4.7	0.90 ~ 1.35	1.92 ± 0.04	> 25

1.Masses of currents (P_6, P_3, V_3) are consistent with K(1690)

3. (A_3, T_6) and T_3 are close to K(1460) and K(1830)

Summary

- Complete $\langle g^3 f G^3 \rangle$ provides significant contribution in light tetraquark systems.
- 10 currents for $0^- u d \bar{d} \bar{s}$ have been calculated by QCDSR.
- The masses of currents (P_6, P_3, V_3) are consistent with K(1690)

Thank you!

中山大學

Related research

Cornell potential-based phenomenology

Table 1: S Wave SSSQ All units are in MeV.

State		- 10 C	T_{sssq}			T_{sqqq}				
	J^P	30	$\overline{3\otimes 3}$		$6\otimes\overline{6}$		$\overline{3}\otimes 3$		$6\otimes 6$	
		M _{SR}	M_{NR}	M _{SR}	M _{NR}	M _{SR}	M _{NR}	M _{SR}	M _{NR}	
$1^{1}S_{0}$		1688.83	1845.90	1161.27	899.72	1439.99	1239.35	1631.54	739.30	
$2^{1}S_{0}$	0^+	2705.68	2797.19	2932.67	3104.81	2470.83	2790.35	2595.88	2973.53	
$3^{1}S_{0}$		3181.37	3280.76	3879.06	4055.92	2962.87	3091.70	3749.25	3932.74	
$1^{3}S_{1}$		1871.25	1998.89	-	-	1653.02	1804.26	-	-	
$2^{3}S_{1}$	1+	2754.48	2840.05	-	-	2535.26	2647.59	-	-	
$3^{3}S_{1}$		3214.45	3306.98	-	-	3003.36	3122.71	-	-	
$1^{5}S_{2}$		2338.73	2300.37	-	-	2070.76	2140.97	-	-	
2^5S_2	2+	2852.10	2918.98		-	2658.23	2742.72	- 🔺	-	
3^5S_2		3277.07	3359.33	-	-	3083.88	3187.37	-	-	
$1^{1}P_{1}$		2635.17	2710.62	2706.09	2868.47	2415.16	2513.20	2561.05	2732.62	
$2^{1}P_{1}$	1-	3091.39	3175.25	3692.30	3850.09	2876.64	2985.56	3552.21	3721.48	
$3^{1}P_{1}$		3455.38	3554.63	4403.68	4580.34	3248.90	3374.29	4278.30	4463.72	
$1^{3}P_{0}$		2314.79	2390.20	1010.72	1151.97	2082.28	2180.37	841.42	988.89	
$2^{3}P_{0}$	0-	2821.00	2905.99	2353.68	2501.65	2590.99	○ 2701.27	2173.36	- 2327.59	
3^3P_0		3206.10	3304.82	3204.07	3376.79	2982.91	3109.17	3034.28	3212.69	

QCDSR

PRD 79 (2009) 114034 0⁻⁻ currents for $qq\bar{q}\bar{q}$ All currents give results over 2GeV PRD 95 (2017) 7, 076017 1⁺⁻ currents $qq\bar{q}\bar{q}$ \sim 1.66GeV for 0⁻⁻