Radiative Decay of the $D_{s0}(2317)$: ³ P_0 Model and Molecular Contributions

Gustavo H. Guerrero-Navarro guerrero@uestc.edu.cn

University of Electronic Science and Technology of China Collab: Yang, Zhi (UESTC)

July 13, 2025 8th Symposium on Hadron Spectroscopy and Hadron Structure, Guilin, China

Outlook and further studies

Introduction

Experimentally

• D_{s0} ($J^P = 0^+$) charm-strange state: First observed very narrow peak near 2320 MeV in the $D_s^+ \to K^+ K^- \pi^+$ and $D_s^+ \to K^+ K^- \pi^+ \pi^0$ channels by BaBar.

$$m_{D_{
m s0}}-(m_D+m_K)\sim 40\,MeV$$

- $D_{sJ} \rightarrow \text{Exotic } c\bar{s} \text{ structure}?$
- $D_{s0}(2317) \rightarrow$ Its mass is significantly lower than early quark model predictions ($\sim 2.48 \text{ GeV}$)

Theoretically

- Tetraquark/Molecular state: A bound state of DK $(D^+K^0 \text{ or } D^0K^+)$ near threshold.
- Strongly coupled to *DK* threshold: Its mass is just below the *DK* threshold (~2360 MeV), suggesting a hadronic molecule or dynamically generated state.

Figure: Babar: PRL 90, 242001(2003)

A proposed unified framework: Quark model + Effective Hadron interactions

There is important differences between the Quark Model (QM) and the experimental data.

D _{sJ} properties					
JP	State	M (MeV)	Г (MeV)	QM	Γ
0+	D _{s0} *(2317)	2317.7±0.6	<3.8	2400~ 2510	large
1'*	D' _{s1} (2460)	2459.6±0.6	<3.5	2528~ 2536	large
1+	D _{s1} (2536)	$2535.10 {\pm} 0.06$	$0.92{\pm}0.05$	2543~ 2605	small
2+	D _{s2} *(2573)	$2569.1{\pm}0.8$	16.9±0.8	$2569{\sim}\ 2581$	small
_					

Strong interaction scale: What is the structure of a particle? -What is inside? Low energy strong scale (Large scale-colorless Hadron interactions). How affect this strong interactions to the masses, widths, the EM processes, etc,...?

2. Theoretical framework

$D_{s0} \rightarrow D_s^* + \gamma$ Amplitude structure

The D_{s0} couples strongly only to its molecular components DK in a S-wave approximation of this channel. EM interaction interacts through molecular components.

The tree and molecular contributions

In the molecular model a value for $Z_{DK} \sim 0.4$ suggest a contribution from also compact bare state.

$$\left|D_{s0}^{*+}(2317)\right\rangle = \cos\theta \left[\frac{Z_{DK}^{1/2}}{\sqrt{2}}|D^{+}K^{0}+D^{0}K^{+}\rangle\right] + \sin\theta|c\bar{s}\rangle$$

Bare tree EM transition

- $\bullet~$ Transition occurs throughout the EM E1 radiative decay for 0^+ \rightarrow 1^- + $\gamma~$
- We obtain the coupling of this transition from the relativized QM wave functions [Godfrey, Phys. Lett. B 568 (2003) 254 - 260]

$$\Gamma_{E1} = \frac{4}{3} \langle e_Q \rangle^2 \alpha k_\gamma C_{if} |\langle f | r | i \rangle|^2 \frac{E_f}{M_i}$$

- Strong interaction : We implement an HEFT to fit the D_{s0} – DK coupling by computing the residue of the T-matrix for a DK – DK bound state
- EM interaction: We introduce chiral *DK* loops. We use a low energy EFT approach: Photon low energy coupling to the *DK* bound and final *D*^s states.

Hadron interaction Lagrangian terms

The effective Lagrangians responsible of the $\mathcal{DD}^*\mathcal{V}$, $\mathcal{D}^*\mathcal{D}^*\mathcal{V}$, $\mathcal{DD}^*\mathcal{P}$ and $\mathcal{D}^*\mathcal{D}^*\mathcal{P}$ interactions are [Faessler:2007gv,Chen:2010re,Chen:2014sra]

$$\begin{aligned} \mathcal{L}_{\mathcal{D}}(*)_{\mathcal{D}}(*)_{\mathcal{P}} &= ig_{\mathcal{D}_{a}^{*}\mathcal{D}_{b}^{P}}\mathcal{D}^{*\mu\dagger}\mathcal{D}_{d}^{\star}\mu\mathcal{P} \\ &- g_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{P}}\epsilon_{\mu\nu\alpha\beta}\mathcal{D}^{*\nu\dagger}(\partial^{\beta}\mathcal{D}^{*\alpha})\partial^{\mu}\mathcal{P} + H.c. \end{aligned}$$

$$\begin{split} \mathcal{L}_{\mathcal{D}(*)\mathcal{D}(*)\mathcal{V}} &= -ig_{\mathcal{D}\mathcal{D}\mathcal{V}}\mathcal{D}_{i}^{\dagger}\overleftarrow{\partial}_{\mu}\mathcal{D}^{j}(\mathcal{V}^{\mu})_{j}^{i} \\ &- 2f_{\mathcal{D}^{*}\mathcal{D}\mathcal{V}}\epsilon_{\mu\nu\alpha\beta}(\partial^{\mu}\mathcal{V}^{\nu})_{j}^{i}\left(\mathcal{D}_{i}^{\dagger}\overleftarrow{\partial}^{\alpha}\mathcal{D}^{*\beta j} - \mathcal{D}_{i}^{*\beta\dagger}\overleftarrow{\partial}^{\alpha}\mathcal{D}^{j}\right) \\ &+ ig_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{V}}\mathcal{D}_{i}^{*\nu\dagger}\overleftarrow{\partial}\mathcal{D}_{\nu}^{*j}(\mathcal{V}^{\mu})_{j}^{i} \\ &+ 4if_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{V}}\mathcal{D}_{i\mu}^{*\dagger}(\partial^{\mu}\mathcal{V}^{\nu})_{j}^{i}\mathcal{D}_{\nu}^{*j}, \end{split}$$

The above coupling constants are given by

$$\begin{split} g_{D^*DP} &= -\frac{g}{f_\pi} \sqrt{m_{D^*} m_D}, \qquad g_{D^*D^*P} = \frac{2g}{f_\pi}, \qquad f_{D^*DV} = \frac{\lambda g_V}{\sqrt{2}} \\ f_{D^*D^*V} &= -\frac{\lambda g_V}{\sqrt{2}} m_{D^*}, \qquad g_{DDV} = g_{D^*D^*V} = \frac{\beta g_V}{\sqrt{2}}, \end{split}$$

with $\lambda = 0.56$ [Chen:2010re] and g = 0.16 [Xiao:2016mho] the gauge couplings. $g_V = m_\rho / f_\pi = 5.8$, $\beta = 0.9$ given the vector meson dominance.

Interaction Lagrangian terms

The Lagrangians containing the relevant electromagnetic couplings are [Dong:2009uf,Faessler:2008vc]

$$\mathcal{L}_{\mathcal{D}\mathcal{D}\gamma} = \textit{ieA}_{\mu} D^{-} \overleftarrow{\partial^{\mu}} D^{+} + \textit{ieA}_{\mu} D_{s}^{-} \overleftarrow{\partial^{\mu}} D_{s}^{+},$$

$$\begin{split} \mathcal{L}_{\mathcal{D}^*\mathcal{D}\gamma} &= \left(\frac{e}{4}g_{D^*+D^+\gamma}\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}D^{*+}_{\alpha\beta}D^-\right.\\ &\left. + \frac{e}{4}g_{K^{*0}K^0\gamma}\epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}K^{*0}_{\alpha\beta}\tilde{K}^0\right) + H.c., \end{split}$$

$$\mathcal{L}_{\mathcal{D}^*\mathcal{D}^*\gamma} = -ieA_{\mu} \left(g^{\alpha\beta} D_{\alpha}^{*-} \overleftarrow{\partial^{\mu}} D_{\beta}^{*+} - g^{\mu\beta} D_{\alpha}^{*-} \partial^{\alpha} D_{\beta}^{*+} + g^{\mu\alpha} \partial^{\beta} D_{\alpha}^{*-} D_{\beta}^{*+} \right)$$
$$-ieA_{\mu} \left(g^{\alpha\beta} D_{s\alpha}^{*-} \overleftarrow{\partial^{\mu}} D_{s\beta}^{*+} - g^{\mu\beta} D_{s\alpha}^{*-} \partial^{\alpha} D_{\beta\beta}^{*+} + g^{\mu\alpha} \partial^{\beta} D_{s\alpha}^{*-} D_{s\beta}^{*+} \right) ,$$

$$\begin{split} \mathcal{L}_{\mathcal{K}^*\mathcal{K}\gamma} &= \left(\frac{e}{4}g_{\mathcal{K}^{*+}\mathcal{K}^+\gamma}\varepsilon^{\mu\nu\alpha\beta}F_{\mu\nu}\mathcal{K}^{*+}_{\alpha\beta}\mathcal{K}^- \right. \\ &\left. + \frac{e}{4}g_{D^{*0}D^0\gamma}\varepsilon^{\mu\nu\alpha\beta}F_{\mu\nu}D^{*0}_{\alpha\beta}\bar{D}^0 \right) + H.c., \end{split}$$

$$\mathcal{L}_{\mathcal{K}\mathcal{K}\gamma} = \mathit{ieA}_{\mu}\mathit{K}^{-}\overleftarrow{\partial^{\mu}}\mathit{K}^{+},$$

All the relevant coulplings involving $D^{(*)}K^{(*)}-\gamma D_s^*$ channels are already fixed by other physical quantities and processes The electromagnetic coupling constants $g_{D^*D\gamma}$ are fixed to the experimental widths $\Gamma_{\gamma}(D^{*+} \rightarrow D^+\gamma) = 1.54 \text{ keV}$ [PDG] and $\Gamma_{\gamma}(D^{*0} \rightarrow D^0\gamma) = 26.04 \text{ keV}$ [PDG],[Dong:2008gb] respectively. These are

$$\begin{array}{lll} |g_{D^{*+}D^{+}\gamma}| & = & 0.5 \, \mathrm{GeV^{-1}} \\ |g_{D^{*0}D^{0}\gamma}| & = & 2.0 \, \mathrm{GeV^{-1}} \end{array}$$

The electromagnetic coupling constants $g_{K^*K\gamma}$ are fixed to the experimental widths $\Gamma_{\gamma}(K^{*+} \to K^+\gamma) = 50.29$ keV and $\Gamma_{\gamma}(K^{*0} \to K^0\gamma) = 116.29$ keV [PDG][Faessler:2008vc]. These are

$$\begin{aligned} |g_{K^{*+}K^{+}\gamma}| &= 0.836 \, \text{GeV}^{-1} \\ |g_{K^{*0}K^{0}\gamma}| &= 1.267 \, \text{GeV}^{-1} \end{aligned}$$

As is suggested in [Faessler:2008vc] one should consider the above coupling constants positively, excepting $g_{K^{*0}K^0\gamma} = -1.267 \, {\rm GeV}^{-1}$

Putting all the pieces together

Gauge Invariant amplitude

One-loop diagrams from $D^*D\gamma$ and $K^*K\gamma$ interaction couplings.

Splitting of Molecular coupling $D_{s0} - DK$

For the process $D_{s0}^*(2317) \to D_s^*\gamma$ the effective transition amplitude, $\mathcal{M}_{\mathrm{Total}}^m$, takes the general form

$$\begin{split} \mathcal{M}_{\mathrm{Mol}}^{m} = & i \epsilon_{\gamma}^{*\mu} \mathcal{M}_{\mu\nu} \epsilon_{D_{s}^{*}}^{\nu}, \\ \mathcal{M}_{\mu\nu} = & e \mathcal{G}_{\mathrm{loop}} \left(g_{\mu\nu} p_{f} \cdot k - p_{f,\mu} k_{\nu} \right) \end{split}$$

The $D_{s0} - DK$ strong S-wave coupling, g_{DK} , simply factorizes from the EM decay amplitude

$$G_{loop} = ig_{DK} f(A_0[m_K^2], A_0[m_D^2], B_0[m_K^2, ...], C_0[m_D^2, ...]..)$$

in terms of well-known 1, 2 and 3 point one loop Passarino-Veltman integral expressions \implies Systematically UV regularized

Strong coupling $D_{s0} - DK$

 $\mathsf{HEFT} \Rightarrow \mathsf{describe}$ the $D_s0(2317)$ as bare $c\bar{s}$ and bound hadron states

$$H = H_0 + H_I$$

$$H_0 = \sum_i |B_i\rangle m_i \langle B_i| + \sum_\alpha |\alpha(k_\alpha)\rangle \left[\sqrt{m_{\alpha_1}^2 + k_\alpha} + \sqrt{m_{\alpha_2}^2 + k_\alpha}\right] \langle \alpha(k_\alpha)|$$

 $|B_i\rangle$ bare state, bare mass $m_i \leftrightarrow Quark$ -gluon based interactions $|\alpha(k_{\alpha})\rangle$ non-interaction channels \leftrightarrow Strong Hadron level interactions

T matrix in HEFT

$$T(E, p_i, p_f) = V(E, p_i, p_f) + \int q^2 dq V(E, p_i, q) G(E, q) T(E, q, p_f)$$

$$V(E, p_i, p_f) = \frac{g(p_i)g(p_f)}{E - m_B} + f(p_i, p_f)$$

$$T(E, p_i, p_f) = t_{res}(E, p_i, p_f) + t_{bg}(E, p_i, p_f)$$

$$= \frac{\Gamma(E, p_i)\overline{\Gamma}(E, p_f)}{E - m_B - \Sigma(E)} + t_{bg}(E, p_i, p_f)$$

$$t_{bg}(E, p_i, p_f) = f(p_i, p_f) + \int q^2 dq \ f(p_i, q) G(E, q) t_{bg}(E, q, p_f)$$

If we can find t_{bg} everything is OK!

$$\begin{split} t_{bg} &= (1 - fw)^{-1}f\\ \Gamma(E, p_i) &= g(p_i) + \int_0^\infty q^2 dq \, t_{bg}(E, p_i, q) G(E, q) g(q)\\ \overline{\Gamma}(E, p_f) &= g(p_f) + \int_0^\infty q^2 dq \, g(q) G(E, q) t_{bg}(E, q, p_f)\\ \Sigma(E) &= \int_0^\infty q^2 dq \, g(p_i) G(E, q) \overline{\Gamma}(E, p_f)\\ G(E, q) &= \frac{1}{E - \sqrt{m_D^2 + q^2} - \sqrt{m_K^2 + q^2} + i\epsilon} \end{split}$$

15 / 29

Bare strong coupling $D_{s0} - DK$: ³ P_0 Model

 $g(|\vec{K}|) = \langle BC, \vec{K}IJ | \mathbf{T}^{\dagger} | A \rangle$

$$\begin{aligned} T^{\dagger} &= T^{\dagger}({}^{3}P_{0}) \\ &= -3\sum_{ij}\int d\vec{p}_{i}d\vec{p}_{j}\delta(\vec{p}_{i}+\vec{p}_{j})C_{ij}F_{ij}V(\vec{p}_{i}-\vec{p}_{j})[\chi_{ij}\times\mathcal{Y}_{1}(\vec{p}_{i}-\vec{p}_{j})]^{(0)}b_{i}^{\dagger}(\vec{p}_{i})d_{j}^{\dagger}(\vec{p}_{j}). \end{aligned}$$

This is the quark-pair creation operator of the ${}^{3}P_{0}$ model which considers the quantum numbers of vacuum (Micu, 1969). $V(\vec{p}_{i}-\vec{p}_{j})=\gamma e^{-r_{q}^{2}(\vec{p}_{i}-\vec{p}_{j})^{2}/6}$, where γ is a free parameter containing the creation probability of the quark-antiquark pair: coupling constant between the $|A\rangle$ states $|BC\rangle$. It can be fited from the strong decay of D_{s} states.

$$g(|\vec{K}|) = \gamma I_{A,[BC]}(|\vec{K}|)e^{-\kappa^2/2\Lambda'^2}$$

Strong coupling $D_{s0} - DK$: Resonant molecular state

The pole positions of bound states or resonances are obtained by searching for the poles of the T -matrix in the complex plane.

$$T(E, p_i, p_f) = \frac{\Gamma(E, p_i)\overline{\Gamma}(E, p_f)}{E - m_B - \Sigma(E)} + t_{bg}(E, p_i, p_f)$$

$$E_0 - m_B - \Sigma(E_0) = 0, \;\; ext{ pole at } E_0 = M_{D_{s0}} - i rac{\Gamma_{ ext{width}}}{2} = 2338.9 \mathit{MeV} < m_D + m_K$$

[Yang, Zhi, et. al. Phys.Rev.Lett. 128 (2022) 11, 112001] The strong effective coupling constant is obtained from the residue of $T(E, p_i, p_f)$ for $p_i = p_f$ around E_0

$$Res(T(E, p_i, p_i)) = \frac{1}{2\pi i} \oint_C T(E(I), p_i, p_i) dI$$
$$= \frac{r}{2\pi} \int_0^{2\pi} T(E_0 + re^{i\theta}) e^{i\theta} d\theta$$

Relating HEFT and Lagrangian EFT strong coupling g_{DK}

HEFT

• ${}^{3}P_{0}$ amplitude for bare $c\bar{s} D_{s0}$ state

$$A_{D_{s0} \to DK} = g(p_0) = \langle DK | T^{\dagger}({}^{3}P_0) | D_{s0}^{*} \rangle$$

• The decay width in multipolar expansion for a ${}^{3}P_{0}$ -like amplitude is given by

$$\Gamma = 2\pi \frac{E_D E_K}{M_{D_{s0}}} p_0 \left| A_{D_{s0} \to DK} \right|^2$$

\mathcal{L}_{Mol}^{D} S-wave effective coupling

 The invariant amplitude given by the L^D_{Mol} term is

$$i\mathcal{M} = \langle DK | i\mathcal{L}_{Mol}^{D} | D_{s0}^{*} \rangle = ig_{DK}$$

Thus, the strong decay width (standard PDG formula) is

$$\Gamma = \frac{P_0 g_{DK}^2}{8\pi M_{D_{s0}}^2}$$

Matching the both decay widths we get that the effective g_{DK} is related to the HEFT matrix element through

$$g_{DK}^2 = 16\pi^2 M_{D_{s0}} E_D E_K \left| A_{D_{s0} \to DK} \right|^2$$

In the molecular model, the strong transition in the HEFT approach is the residue of the T-matrix in the physical pole, ${\it E}_0$

$$|A_{D_{s0} \to DK}|^2 = Res(T)$$

3. Results

Table: EM decay widths in units of keV (g_{DK} here represents only the absolute values in GeV) for the different contributions and Renormalization schemes.

Renor. scheme	Only DK loops	Only $DK(K^*)$ and $D(D^*)K$ loops	All loops
$\overline{\mathrm{MS}}-1$	$0.0097g_{DK}^2$	$0.25g_{DK}^2$	$0.36g_{DK}^2$
$\overline{\mathrm{MS}}$	$0.0097g_{DK}^2$	$0.14g_{DK}^2$	$0.22g_{DK}^2$

- The only loops dependent on the renormalization scheme are those with $DD^*\gamma$ and $KK^*\gamma$ transition vertices.
- The set of pure DK loops and loops with $PV^*\gamma$ verices iterfere positively
- The main contribution to the EM transition comes from the transitions $P \rightarrow V \gamma$ in the molecular components. Individual *DK* loops are of similar size but they cancel among themselves.

Effective molecular coupling $D_{s0} - DK$

Table: Effective couplings for the $D_{s0} - DK$ interaction in the HEFT and the corresponding Lagrangian molecular S-wave approach

Case	HEFT	Lagrangian EFT
Bare ${}^{3}P_{0}$ model	$g(p_0) = -0.53 \ GeV^{-1/2}$	$g_{DK} = 10.34 \; GeV?$
Molecular model	$\widetilde{\Gamma}(E_0) = 0.587 \ GeV^{-1/2}$	$g_{DK} = 10.62 \; GeV$

$$\widetilde{\Gamma}(E_0) = \sqrt{\operatorname{Res}(T)} \approx \mathcal{Z}_{D_{s0}}^{1/2} \Gamma(E_0)$$
 $\mathcal{Z}_{D_{s0}} = (1 - \frac{d\Sigma(E_0)}{dE})^{-1} = 0.41$

Other study on molecular picture include:

- $g_{DK} = 9.0 \pm 0.5$ GeV [Cleven M., et al. EPJ A 50 (2014) 149]
- $g_{DK} = 10.77 \pm 13$ GeV [Gil F., Molina R. PRD 109 (2024) 9, 096002]

See also [Faessler A, et al. PRD 76 (2007) 014005] \mapsto

Table 1. Coupling constant $g_{D_{a0}^*DK}$. The range of values for our results is due to the variation of $\Lambda_{D_{a0}^*}$ from 1 to 2 GeV.

Approach	$g_{D_{H0}^*DK}$ (GeV)	
Ref. [51]	2.5 - 3.8	
Ref. [72]	5.068	
Ref. [73]	5.5 ± 1.8	
Ref. [67]	$5.9^{+1.7}_{-1.6}$	
Ref. [38]	6.0 - 7.8	
Ref. [49]	$9.3^{+2.7}_{-2.1}$	
Ref. [74]	< 9.86	
Ref. [11]	10.203	
Our results:		
NC case	9.90 - 11.26	
LC case	8.98	
NCHQL case	11.52 - 16.22	
LCHQL case	11.52	

Kinematical inputs: $M_{Ds0} = M_0 = 2.338$ GeV (T matrix pole) $k_\gamma = 196$ MeV

Renor. scheme	DK loops	$DK(K^*)$ and $D(D^*)K$ loops	Full loops
$\overline{\mathrm{MS}}-1$	1.094	40.602	28.647
$\overline{\mathrm{MS}}$	1.094	24.813	15.564

Table: EM decay widths in units of keV

Bare state radiative decay

Relativized QM

$$\Gamma_{E1} = \frac{4}{3} \langle e_Q \rangle^2 \alpha k_\gamma C_{if} \delta_{SS'} |\langle f | \mathbf{r} | \mathbf{i} \rangle|^2 \frac{E_f}{M_i}$$

Using the Godfrey-Isgur potential model

[Godfrey, Phys.Lett.B 568 (2003) 254-260]

$$\langle f|r|i\rangle = \int dr r^2 R_f(r)^* r R_i(r) = 2.17 \,\mathrm{GeV}^{-1}$$

$$\mathcal{L}_{ctc} = i\kappa F_{\mu\nu} \left(v^{\mu} D_{s0}^{*} D_{s\beta}^{*\dagger} + \cdots \right) + \text{H.c.}$$

[Cleven, M. et al. Eur.Phys.J.A 50 (2014) 149] In the D_{s0}^* rest frame, v = (1, 0, 0, 0), the effective tree amplitude takes the form

$$\mathcal{M}_{ctc} = -i\kappa k_{\gamma}\epsilon_{\gamma}^{*}\epsilon_{D_{s}^{*}}^{*}$$

Thus, the decay amplitude (PDG)

$$\Gamma_{E1} = \frac{k_{\gamma}}{8\pi M_i^2} 2|ik_{\gamma}\kappa|^2$$

• Later on, in the interpretation of D_{s0}^* state as an hybrid $(c\bar{s} + DK)$, we use \mathcal{M}_{ctc} and fix κ from the GI wave functions

$$\kappa^{2} = \frac{4\pi}{3} (2E_{f})(2M_{i})C_{if}\langle e_{Q}\rangle^{2} \alpha \delta_{SS'} |\langle f|r|i\rangle|^{2}$$

23 / 29

EM Decay widths: Bare + molecular contributions

 $\mathcal{M}_{\textit{Full}} = \mathcal{M}_{\textit{ctc}} + \mathcal{M}_{\rm Mol}$

D _{s0} Interpretation	Contributions	Γ_{γ} (keV)
Pure Bare state	$[car{s}] o D^*_s \gamma$	1.25
Pure Molecular	$[DK] ightarrow D_s^* \gamma$	1.09
	$[DK] ightarrow [D^{(*)}K^{(*)}] \gamma ightarrow D_s^* \gamma$	15.59
	$[DK] ightarrow { m All\ loops} ightarrow D_s^* \gamma$	24.96
Bare+Molecular	$[car{c}+DK] ightarrow D_s^*\gamma$	0.005
	$[c\bar{s}+DK] ightarrow [D^{(*)}K^{(*)}]\gamma ightarrow D_s^*\gamma$	8.01
	$[c\bar{s} + DK] ightarrow { m All\ loops} ightarrow D_s^* \gamma$	15.04

Table: Radiative decay widths $D_{s0}^* \rightarrow D_s^* \gamma$ for all the models.

The exp. value is $\Gamma_{\gamma}^{exp} < 6\%\Gamma_{Full}$, where $\Gamma_{Full} < 3.8$ MeV. Then $\Gamma_{\gamma}^{exp} < 228$ keV

Figure: Radiative decay widths $D^*_{s0} \rightarrow D^*_s \gamma$ for different interpretations.

Comparison with other works

Approach	$\Gamma_{\gamma}(D_{s}0^{*} \rightarrow D_{s}^{*}\gamma) \text{ (keV)}$
Bare [PRD 69, 114008 (2004)]	0.2
Bare [PLB 570, 180 (2003)]	$\simeq 1$
Bare [Mol] PRD 72, 094004 (2005)	1 [25]
CQM Bare [EPJ C 47, 445 (2006)]	1.1
Bare [PRD 75, 034013 (2007)]	1.3-9.9
Bare [EPJ A 21, 501 (2004)]	≤ 1.4
Bare [PRD 68, 054024 (2003)]	1.74
Bare [S. Godfrey PLB 568, 254 (2003)]	1.9
Bare [Phys.Rev.D 72 (2005) 074004]	4-6
[AIP Conf. Proc. 717, 716 (2004)]	21
pure [DK] Mol. [PRD 76 (2007) 014005]	0.47 -1.41
unquenched frame Mol. [Bare+Mol.] PRD 110 (2024) 9, 094037	32.06 [4.27]
χ EFT [Bare+Mol.] EPJ A 50 (2014) 149	9.4
χ EFT [Bare+Mol.] EPJ A 58 (2022)70	3.7
Our results:	
Bare case	1.25
Molecular case	24.96
Bare + Mol.	15.04

4. Outlook and further studies

Summary and Outlook

- Molecular and bare components play a crucial role in explaining $D_{s0}(2317)$ mass below the DK threshold due to self energy effects.
- Understanding the strong coupling of the bound state D_{s0} is a key aspect (scales as ~ g_{DK}) in the study of its radiative decay.
- Bare contributions and pure DK contributions are of similar size. However they interfere destructively and the main contribution comes from $PV\gamma$ couplings in the molecular structure.
- The present approach can be extended to radiative decays for the D^*K bound state partner $D_{s1}(2460)$, and their bottom analogous B^*_{s0} and B_{s1} where radiative decays are supposed less suppressed.
- Results are far below the upper limit of the experimental value which is around 10 times larger in comparison. Branching ratios may offer a more accurate comparison for theoretical results.

Thank you!