

Emergence of charm-strange dibaryons with negative parity via baryon-baryon interactions

Yu-yue Cui(崔雨月) Supervisor: Rui Chen Collaborators: Xiao-mei Tang, Qi Huang

(2) The one-boson-exchange model

2025年7月11日-15日 广西•桂林

3 Results and discussions

4 Summary

1.1 QCD color singlet

第八届强子谱强子结构研讨会

Experiments : reported a series of new hadron structures.

- Two key characteristics:
 - 1. Inconsistent with the predictions of the conventional quark mode.
 - 2. Close to the threshold of a pair of traditional hadrons.

1.2 Why do we study P system?

Predicting possible molecular states of nucleons with $\Xi_c N$, $\Xi'_c N$, $\Xi'_c N$, $\Xi'_c N$ [Phys. Rev. D 110 (2024) 5, 054040]

- **S-D** wave interactions ;coupled channel effects.
- Result : Search for hadronic molecule candidates and predict the existence of resonance states.
- P-wave systems: $\frac{l(l+1)}{r^2}$

[Phys. Rev. Lett. 133 (2024) 24, 241903]

2025年7月11日-15日 广西•桂林

The paper identifies G(3900) as the first P-wave $D\overline{D}^*/\overline{D}D^*$ molecular resonance.

The one-boson-exchange model

2025年7月11日-15日 广西•桂林

3 Results and discussions

4 Summary

第八届强子谱强子结构研讨会

2

2.1 Effective potentials

P-wave interactions ; coupled-channel effects. Systems: $\Xi_c N$, $\Lambda_c \Sigma$, $\Xi'_c N$, $\Sigma_c \Lambda$, $\Xi^*_c N$, $\Sigma^*_c \Lambda$, $\Sigma_c \Sigma$, $\Sigma^*_c \Sigma$.

For the interactions between the light baryons and the light mesons:

$$\mathcal{L}_{BB\sigma} = g_{BB\sigma} \bar{B} \sigma B, \tag{4}$$

$$\mathcal{L}_{BBP} = \frac{g_{BBP}}{m_P} \bar{B} \gamma^5 \gamma^\mu \partial_\mu PB, \qquad (5)$$

$$\mathcal{L}_{BBV} = g_{BBV} \bar{B} \gamma^{\mu} V_{\mu} B - \frac{f_{BBV}}{2m_B} \bar{B} \sigma^{\mu\nu} \partial_{\nu} V_{\mu} B.$$
(6)

 $g_{\sigma NN} = 8.46,$ $g_{\pi NN} = 13.07,$ $g_{\rho NN} = 3.25,$ $f_{\rho NN} = 19.82.$

Phys. Rept.149, 1 (1987). Phys.Rev.C63, 024001(2001). Phys. Rev. C 81, 065201 (2010)

- S U(3) symmetry
- Effective Lagrangians for the interaction between hadrons and light mesons:

$$\mathcal{L}_{\mathcal{B}_{\bar{3}}} = l_{B} \langle \bar{\mathcal{B}}_{\bar{3}} \sigma \mathcal{B}_{\bar{3}} \rangle + i \beta_{B} \langle \bar{\mathcal{B}}_{\bar{3}} v^{\mu} (\mathcal{V}_{\mu} - \rho_{\mu}) \mathcal{B}_{\bar{3}} \rangle, \qquad (1)$$

$$\mathcal{L}_{\mathcal{B}_{6}} = l_{S} \langle \bar{\mathcal{S}}_{\mu} \sigma \mathcal{S}^{\mu} \rangle - \frac{3}{2} g_{1} \varepsilon^{\mu \nu \lambda \kappa} v_{\kappa} \langle \bar{\mathcal{S}}_{\mu} \mathcal{A}_{\nu} \mathcal{S}_{\lambda} \rangle$$

$$+ i \beta_{S} \langle \bar{\mathcal{S}}_{\mu} v_{\alpha} (\mathcal{V}^{\alpha} - \rho^{\alpha}) \mathcal{S}^{\mu} \rangle + \lambda_{S} \langle \bar{\mathcal{S}}_{\mu} F^{\mu \nu}(\rho) \mathcal{S}_{\nu} \rangle, (2)$$

$$\mathcal{L}_{\mathcal{B}_{\bar{3}} \mathcal{B}_{6}} = i g_{4} \langle \bar{\mathcal{S}}^{\mu} \mathcal{A}_{\mu} \mathcal{B}_{\bar{3}} \rangle + i \lambda_{I} \varepsilon^{\mu \nu \lambda \kappa} v_{\mu} \langle \bar{\mathcal{S}}_{\nu} F_{\lambda \kappa} \mathcal{B}_{\bar{3}} \rangle + h.c. \qquad (3)$$

$$\begin{split} l_{s} &= -2l_{B} = -\frac{2}{3}g_{\sigma NN}, g_{1} = \frac{2\sqrt{2}}{3}g_{4} \\ &= \frac{2\sqrt{2}f_{\pi}g_{\pi NN}}{5M_{N}}, \beta_{s}g_{V} = -2\beta_{B}g_{V} = -4g_{\rho NN}, \\ \lambda_{s}g_{V} &= -\sqrt{8}\lambda_{I}g_{V} = -\frac{6(g_{\rho NN} + f_{\rho NN})}{5M_{N}} \end{split}$$

Estimated from the quark model

heavy quark symmetry; chiral symmetry; hidden local symmetry.

第八届强子谱强子结构研讨会

2.1 Effective potentials

$$\mathcal{B}_{\bar{3}} = \begin{pmatrix} 0 & \Lambda_{c}^{+} & \Xi_{c}^{+} \\ -\Lambda_{c}^{+} & 0 & \Xi_{c}^{0} \\ -\Xi_{c}^{+} & -\Xi_{c}^{0} & 0 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} V = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega'}{\sqrt{6}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega'}{\sqrt{6}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & -\sqrt{\frac{2}{3}}\omega' \end{pmatrix}$$
$$\mathcal{B}_{6}^{(*)} = \begin{pmatrix} \frac{\Sigma_{c}^{(*)+}}{\sqrt{2}} & \frac{\Xi_{c}^{(',*)+}}{\sqrt{2}} \\ \frac{\Sigma_{c}^{(*)+}}{\sqrt{2}} & \Sigma_{c}^{(*)0} & \frac{\Xi_{c}^{(',*)+}}{\sqrt{2}} \\ \frac{\Xi_{c}^{(',*)+}}{\sqrt{2}} & \frac{\Xi_{c}^{(',*)0}}{\sqrt{2}} \\ \frac{\Sigma_{c}^{(*)+}}{\sqrt{2}} & \frac{\Xi_{c}^{(*)0}}{\sqrt{2}} \\ \frac{\Sigma$$

P and V denote the pseudoscalar meson matrix and vector meson matrix under SU(3) symmetry, respectively.

- B denotes the SU(3) baryon octet;
- **B**₃ represents the triplet heavy-flavor baryons;
- **B**₆ represents the sextet heavy-flavor baryons.

2.2 One-boson-exchange (OBE) model

Form factor $F(q^2, m_E^2) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2} \wedge$ (One free parameter < 2*G*eV), m and q are the cutoff, mass and four-momentum of the exchanged meson, respectively.

2025年7月11日-15日 广西•桂林

(2) The one-boson-exchange model

2025年7月11日-15日 广西•桂林

4 Summary

3.11 Hadronic molecular states

Loosely bound molecular states in the single system

- Method: the multi-Gaussian expansion method.
- $I(J^p) = \mathbf{0}(\mathbf{0}^-)$ The $\Sigma_C^* \Sigma$ single-channel system;
- $R = R_{\Sigma_c^*} + R_{\Sigma}$ (the size of the system should be

larger than the size of all component hadrons).

• Mass
$$M = M_{\Sigma_c^*} + M_{\Sigma} - |E|$$
, E: binding energy.

$I(J^P)$	Λ	E	r _{RMS}	$\Sigma_c^* \Sigma({}^3P/{}^5P)$
0(0-)	1.050	-1.15	1.98	100/-
	1.060	-3.95	1.46	100/-
	1.070	-7.21	1.26	100/-

2025年7月11日-15日 广西•桂林

3.12 $\Xi_c N$ System

Single-channel system :

No bound state solution.

- Coupled channel bound states:
- The obtained binding energies are very sensitive with the cutoff value.
- > The dominant channels are not the lowest channel $\Xi_c N$, which leads to the small size of these bound states.
- Thus, we cannot recommend these coupled channel bound states as prime molecular candidates.

TABLE VI: The bound state solutions (the binding energy *E*, the root-mean-square radius r_{RMS} , and the probabilities p_i for all the discussed channels) for the $\Xi_c N$ systems with $I(J^p) = O(0^-)$, $O(1^-)$, $O(2^-)$, $1(0^-)$, $1(1^-)$, and $1(2^-)$ after considered the coupled channel effects. Here, the unites for the cutoff Λ , the binding energy *E*, and the root-mean-square radius r_{RMS} are GeV, MeV, and fm, respectively.

$I(J^P)$	Λ	E	r _{RMS}	$\Xi_c N(^1P/^3P)$	$\Lambda_c \Sigma(^1 P/^3 P)$	$\Xi_c' N(^1 P/^3 P)$	$\Sigma_c \Lambda(^1 P/^3 P)$	$\Xi_c^* N({}^3P/{}^5P)$	$\Sigma_c^* \Lambda({}^3P/{}^5P)$	$\Sigma_c \Sigma(^1 P/^3 P)$	$\Sigma_c^*\Sigma({}^3P/{}^5P)$
0(0-)	1.108	-1.70	1.23	-/53.90	_/_	-/8.08	_/_	37.95/-	_/_	-/0.07	0.01/-
	1.110	-5.04	0.93	-/50.56	_/_	-/8.36	_/_	41.00/-	_/_	-/0.07	0.01/-
	1.112	-8.63	0.82	-/48.24	_/_	-/8.48	_/_	43.20/-	_/_	-/0.07	0.01/-
0(1-)	1.074	-0.14	2.05	31.59/20.52	-/-	31.55 /3.88	_/_	12.13 /0.02	_/_	0.13/0.13	0.05/~0.00
	1.076	-3.22	0.97	29.14/18.84	_/_	34.20 /4.24	_/_	13.19 /0.02	_/_	0.15/0.15	0.06/~0.00
	1.078	-6.52	0.83	27.93/18.05	_/_	35.44 /4.43	_/_	13.74 /0.02	_/_	0.16/0.17	0.06/~0.00
0(2-)	1.108	-0.05	2.53	-/52.40	_/_	-/6.50	_/_	41.00 /0.09	_/_	-/0.01	0.01/0.01
	1.110	-3.57	0.92	-/47.62	_/_	-/7.10	_/_	45.18 /0.08	_/_	-/0.01	0.01/0.01
	1.112	-7.35	0.78	-/45.45	_/_	-/7.34	_/_	47.11 /0.07	_/_	-/0.01	0.01/0.01
1(0-)	1.103	-1.84	0.55	-/5.66	-/34.88	-/0.09	-/3.76	2.45/-	20.31/-	-/4.40	28.45/-
	1.104	-4.71	0.52	-/5.38	-/34.74	-/0.09	-/3.76	2.48/-	20.48/-	-/4.40	28.67/-
	1.105	-7.61	0.50	-/5.20	-/34.57	-/0.09	-/3.75	2.50/-	20.63/-	-/4.40	28.86/-
1(1-)	1.092	-3.83	0.51	4.21/0.01	29.70 /~0.00	2.68/~0.00	25.58/~0.00	~0.00/0.03	~0.00/0.96	36.72/~0.00	~0.00/0.11
	1.093	-6.68	0.50	4.09/~0.01	29.57/~0.00	2.70/~0.00	25.68/~0.00	~0.00/0.03	~0.00/0.97	36.85/~0.00	~0.00/0.10
	1.094	-9.56	0.49	4.00/0.01	29.44 /~0.00	$2.71/\sim 0.00$	25.76/~0.00	~0.00/0.03	~0.00/0.98	36.96 /~0.00	~0.00/0.10
1(2-)	1.103	-1.73	0.54	-/5.31	-/33.80	-/0.28	-/3.15	2.31/0.02	21.29 /0.01	-/4.23	29.57 /0.03
	1.104	-4.64	0.51	-/5.07	-/33.69	-/0.28	-/3.16	2.33/0.02	21.42 /0.01	-/4.25	29.74 /0.03
	1.105	-7.58	0.49	-/4.93	-/33.55	-/0.29	-/3.17	2.35/0.02	21.53 /0.01	-/4.26	29.88 /0.03

2025年7月11日-15日 广西•桂林

3.13 Ξ_c^*N System

第八届强子谱强子结构研讨会

TABLE X: The bound state solutions (the binding energy E, the root-mean-square radius r_{RMS} , and the probabilities p_i for all the discussed channels) for the $\Xi_{*}^{*}N$ systems with $I(J^{P}) = 0(0^{-}), 0(1^{-}), 0(2^{-}), 1(0^{-}), 1(1^{-}), and 1(2^{-})$. Here, the unites for the cutoff A, the binding energy E, and the root-mean-square radius r_{RMS} are GeV, MeV, and fm, respectively.

_

Single channel	$I(J^P)$	Λ	E	r _{RMS}	$\Xi_c^* N({}^3P/{}^5P)$	$I(J^P)$	Λ	E	r _{RMS}	$\Xi_c^* N({}^3P/{}^5P)$
	0(0-)	1.285	-1.37	1.59	100/-	0(1-)	1.340	-2.22	1.31	91.29/8.70
		1.290	-3.90	1.22	100/-		1.345	-6.50	1.00	93.08/6.91
		1.295	-6.71	1.06	100/-		1.350	-11.30	0.86	94.25/5.74
	0(2-)	1.320	-0.21	2.99	74.75/25.24	1(0-)	_/_	_/_	_/_	_/_
		1.327	-4.27	1.27	86.21/13.78	1(1-)	_/_	_/_	_/_	_/_
		1.334	-9.47	0.98	91.19/8.80	1(2-)	_/_	_/_	_/_	_/_
Coupled channel	$I(J^P)$	Λ	E	r _{RMS}	$\Xi_c^* N({}^3P/{}^5P)$	$\Sigma_c^* \Lambda({}^3P/{}^5P)$	$\Sigma_c \Sigma(^1 P/^3 P)$	$\Sigma_c^* \Sigma({}^3P/{}^5P)$		
	0(0-)	1.280	-0.06	3.35	94.47/-	_/_	-/ ~0.00	5.52/-		
		1.290	-5.11	1.13	93.03/-	_/_	-/~0.00	6.96/-		
		1.300	-11.21	0.93	92.15/-	_/_	-/~0.00	7.83/-		
	0(1-)	1.339	-1.73	1.41	87.64/8.94	_/_	0.29/0.09	2.75/0.26		
		1.342	-4.08	1.13	88.60 /7.68	_/_	0.32/0.10	2.99/0.28		
		1.345	-6.62	1.00	89.24 /6.79	_/_	0.34/0.12	3.19/0.29		
	0(2-)	1.323	-0.59	2.24	71.52/22.25	_/_	-/0.07	5.77/0.36		
		1.329	-4.01	1.28	78.44/13.63	_/_	-/0.09	7.37/0.44		
		1.335	-8.18	1.02	81.63 /9.32	_/_	-/0.10	8.45/0.49		
	1(0 ⁻)	1.276	-1.25	0.60	6.28/-	43.15/-	-/4.83	45.74/-		
		1.279	-5.72	0.55	5.90/-	43.20/-	-/4.95	45.94/-		
		1.282	-10.33	0.53	5.73/-	43.18/-	-/5.06	46.02/-		
	1(1-)	1.604	-2.21	0.53	0.17/0.75	0.87/29.66	54.39 /4.13	0.06/9.96		
		1.607	-5.84	0.51	0.15/0.68	0.88/29.91	54.02 /4.10	0.07/10.18		
		1.610	-9.56	0.50	0.13/0.63	0.88/ 30.15	53.64 /4.06	0.07/10.40		
	1(2-)	1.277	-1.24	0.59	5.12/0.23	39.99 /0.52	14.43/-	37.56/2.16		
		1.280	-6.04	0.54	4.87/0.17	40.13 /0.45	14.44/-	37.83 /2.07		
		1.283	-11.01	0.53	4.79/0.14	40.22 /0.40	14.43/-	38.03 /2.00		

• For the single-channel system of $\Sigma_C \Sigma$ with $I(J^p)0(1^-)$ bound state solutions exist. The coupled-channel effect has a positive effect on this molecular state. The $\Sigma_C \Sigma / \Sigma_C^* \Sigma$ coupled molecular state with

第八届强子谱强子结构研讨会

1(**1**⁻).

TABLE XII: The bound state solutions (the binding energy *E*, the root-mean-square radius r_{RMS} , and the probabilities p_i for all the discussed channels) for the $\Sigma_c \Sigma$ systems with $I(J^p) = O(0^-)$, $O(1^-)$, $O(2^-)$, $1(0^-)$, $1(1^-)$, and $1(2^-)$. Here, the unites for the cutoff Λ , the binding energy *E*, and the root-mean-square radius r_{RMS} are GeV, MeV, and fm, respectively.

Single channel	$I(J^P)$	Λ	E	r _{RMS}	$\Sigma_c \Sigma(^3 P/^5 P)$	
	0(1-)	1.100	-0.10	2.86	100/0.00	
		1.110	-4.57	1.19	100/0.00	
		1.120	-9.84	1.00	100/0.00	
Couple channel	$I(J^P)$	Λ	E	r _{RMS}	$\Sigma_c \Sigma(^3 P/^5 P)$	$\Sigma_c^* \Sigma({}^3P/{}^5P)$
	0(0^-)	1.150	-2.90	0.68	-/1.63	98.36/-
		1.155	-7.47	0.67	-/1.70	98.30/-
		1.160	-12.18	0.65	-/1.76	98.23/-
	0(1-)	0.930	-0.04	5.15	29.25/68.48	0.37/1.89
		0.950	-4.90	1.65	38.55/57.89	0.72/2.82
		0.970	-11.83	1.30	43.64/52.22	1.05/3.07
	0(2-)	1.165	-2.19	0.77	-/13.70	82.27 /4.03
		1.170	-6.89	0.69	-/12.71	83.44 /3.83
		1.175	-11.79	0.67	-/12.21	84.18/3.62
	1(0-)	_/_	_/_	_/_	_/_	_/_
	1(1-)	1.850	-0.37	2.80	5.41/9 1.23	0.22/3.12
		1.900	-3.68	1.57	6.25/89.31	0.24/4.18
		1.950	-7.86	1.28	6.81/ 88.00	0.23/4.94
	1(2-)	_/_	_/_	_/_	_/_	_/_

3.21 Resonances

Resonances Feshbach-type

• For the : $\Lambda_c \Sigma$, $\Sigma_c^* \Lambda$, $\Sigma_c^* \Sigma$. interactions with $\mathbf{0}(\mathbf{0} -)$;

This leads to themaximum of the scattering cross

section,

 $\sigma_{t} = \frac{4\pi}{2\mu E} \sum_{l=0}^{\infty} (2l+1) \sin^{2} \delta_{l}(E)$ $\delta_{l}(E_{r}) = (n+1/2)\pi \quad n = 0 \quad 1 \quad 2 \cdots$ The resonant width is defined as $\Gamma_{r} = 2/\left(\frac{d\delta}{dE}\right)_{E_{r}}$,

• Msaa:
$$\mathbf{M} = \mathbf{M}_{A_c} + \mathbf{M}_{\Sigma} + \mathbf{E}_{a}$$

 Λ =1.07GeV E=0.14GeV Γ=0.06GeV

2025年7月11日-15日 广西•桂林

3.21 $I(J^P) = \mathbf{1}(\mathbf{0}^-) \Sigma_C^* \Sigma$ Resonances

第八届强子谱强子结构研讨会

We can not obtain the loosely bound state solutions for the $\Sigma_C^*\Sigma$ molecule with 1(0⁻) in the reasonable cutoff region.

Thus , this state is a shape-type resonance dominated by the $\Sigma_{C}^{*}\Sigma$ channel.

3.22 $I(J^P) = O(O^-) \Xi_c^* N$ bound state

• The obtained resonance here is not an independent state, but corresponds to the \mathcal{Z}_c^*N molecule with 0(0-).

2025年7月11日-15日 广西•桂林

The current results can provide the important information of the total decay width for the \mathcal{Z}_c^*N bound state.

3.23 $I(J^P) = \mathbf{1}(\mathbf{1}^-)\Lambda_C \Sigma / \Sigma_C \Sigma$ Feshbach-type resonance

- The $\Lambda_C \Sigma / \Sigma_C \Sigma$ coupled interactions and the $\Lambda_C \Sigma / \Sigma_C \Lambda / \Sigma_C \Sigma$ coupled interactions are very similar.
- This indicates that the resonance is a Feshbach-type resonance, where both the $\Lambda_C \Sigma$ and $\Sigma_C \Sigma$ channels play important roles.

第八届强子谱强子结构研讨会

(2) The one-boson-exchange model

2025年7月11日-15日 广西•桂林

3 Results and discussions

4. Summary

In this work, we systematically study the P-wave interactions between the charmed and light baryons by using the OBE model. The research results are as follows:

hadronic molecule candidates •••••• shape-type resonance Feshbach-type resonance

2025年7月11日-15日

西●杆林

Thanks for your attention

2025年7月11日-15日 广西•桂林