Spin parity of tetraquark candidates in $J/\psi J/\psi$ mass spectrum at CMS

张敬庆 南京师范大学

第八届强子谱和强子结构研讨会桂林 2025.07.11-2025.07.15

CMS detector

- ➤ Excellent detector for (exotic) quarkonium
- Good muon system
 - High-purity muon ID, $\frac{\Delta m}{m} \sim 0.6\%$ for J/ψ
- Silicon tracking detector
 - B = 3.8 T, $\frac{\Delta p_T}{p_T} \sim 1\%$ & good vertex resolution
- Different triggers for different physics programs/purposes

The tetraquark candidates at LHC

- Structures in $J/\psi J/\psi$ mass spectrum at CMS, LHCb and ATLAS from the LHC run 2 data
- Structures established but need more study to understand them

Internal Structure of the tetraquarks

arxiv:2506.07944

• Tetraquark candidates observed in experiments

- Don't know internal structure
 - Tetraquark, molecule, …?
- Don't know spin-parity either
 - How to study their spin-parity?

Infer spin-parity of X

- Infer J^{PC} of X from angular distributions
 - Theory
 - $A(X \rightarrow VV)$ depends on J_X^{PC} polarization of J/ψ
 - $A(X \rightarrow VV)$ determines angular distributions
 - Z_2 Ω,

- Experiment
 - Measure angular distributions of J/ψ , μ etc.
 - Infer J^{PC} of X

 θ_2

p

Φ

J/ψ polarizations

J/ψ polarizations

• Symmetries:

 $\begin{array}{l} - \text{ angular momentum: } |\lambda_1 - \lambda_2| \leq J & -P \& C \text{ conserved} \\ - \text{ identical } J/\psi \text{ bosons } A_{\lambda_1\lambda_2} = (-1)^J A_{\lambda_2\lambda_1} & \text{ in QCD: } \\ A_{\lambda_1\lambda_2} = P (-1)^J A_{\lambda_2\lambda_1} & C = +1 \\ A_{\lambda_1\lambda_2} = P (-1)^J A_{-\lambda_1-\lambda_2} \end{array}$

 $\begin{array}{c} \sum_{X} A_{++} \\ = \\ A_{--} \\ A_{00} \\ \hline \\ A_{0+} \\ \hline \\ A_{-0} \\ A_{0-} \\ \hline \\ A_{-+} \\ \hline \\ \hline \\ \\ E_{X} \\ A_{+-} \\ \hline \\ \hline \\ \\ E_{X} \\ A_{-+} \\ \hline \\ \hline \\ \\ E_{X} \\ A_{-+} \\ \hline \\ \hline \\ \\ A_{0-} \\ \hline \\ A_{0$

Lorentz invariant amplitude

- a papaga ta baya tha appagatapagar atruatura
- Expect three resonances to have the same tensor structure

Simplification in angular analysis

- Full amplitude analysis possible, but very complex $\mathscr{P}(\Phi, \theta_1, \theta_2; m_{4\mu}) \propto |A(X \to VV)|^2$
- Simplification in angular analysis

(1) Same properties of <u>3 resonances</u>:

$$\mathcal{P}(m_{4\mu}, \overrightarrow{\mathbf{\Omega}}) = \mathcal{P}(m_{4\mu}) \cdot T(\overrightarrow{\mathbf{\Omega}} \mid m_{4\mu})$$

empirical angular

arXiv:1208.4018

(2) Pairwise tests of J_X^P hypotheses i and j: **MELA** $\mathscr{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathscr{P}_i(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathscr{P}_i(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathscr{P}_j(\overrightarrow{\Omega} \mid m_{4\mu})}$

1 optimal observable \leftarrow Higgs boson discovery and spin-parity

• Final 2D model:

$$(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu})$$

Analysis of data

• Two dimensions $(m_{4\mu}, D_{ij})$ analysis:

$$\mathscr{P}_{ijk}(m_{4\mu}, \mathscr{D}_{ij}) = \mathscr{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathscr{D}_{ij} \mid m_{4\mu})$$

- Event selection from observation paper <a>arxiv:2306.07164
- BKG: data sideband & MC simulation with Pythia
- *m*_{4µ} shapes: <u>arxiv:2306.07164</u>
- Decay angles Φ, θ_1, θ_2 to identify $D_{ij}(\Phi, \theta_1, \theta_2; m_{4\mu})$

Decay angles

• Production angles not use - consistent with unpolarized

arxiv:2506.07944

• Decay angles (consistency check): distinguish models

Optimal Observables

arxiv:2506.07944

135 fb⁻¹ (13 TeV)

0.8

Data

• 1D projection of data, optimal for $j = 0^{-}(2_m^{-})$ vs $i = 2_m^{+}$

 \Rightarrow limited information

background model from MC control in sidebands systematic variations

D_{2⁺_m0⁻}

Hypothesis test of 0^- vs. 2_m^+

arxiv:2506.07944

• Hypothesis test for $j = 0^-$ vs. $i = 2_m^+$

		Observed		Expected		
		<i>p</i> -value	Z-score	<i>p</i> -value	Z-score	
0^{-} vs 2^{+}	0-	$2.7 imes 10^{-13}$	7.2	$6.5 imes10^{-14}$	7.4	
$0 \sqrt{S} Z_m$	2_m^+	0.42	0.2	0.5	0	

- 2D parameterization: $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij}|m_{4\mu})$
- Test statistics:

$$q = -2\ln(\mathcal{L}_{J_i^P}/\mathcal{L}_{J_j^P})$$

• Confidence level:

$$CL_{s} = \frac{P(q \ge q_{\text{obs}} \mid J_{j}^{P} + \text{bkg})}{P(q \ge q_{\text{obs}} \mid J_{i}^{P} + \text{bkg})}$$

Hypothesis test of $J_i^P vs. J_j^P$

arxiv:2506.07944

• Combined 2D fit: $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij})$ $\gg J^P = 2_m^+ \text{ model survives}$

第八届强子谱和强子结构研讨会

Summary of results

Summary

- J^{PC} of the three resonances in $J/\psi J/\psi$ at CMS
 - PC = ++

arxiv:2506.07944

- *J* ≠ 1 at > 99% CL
- *J* ≠ 0 at > 95% CL
- J > 2 possible, but highly unlikely, require $L \ge 2$
- **J** = 2 consistent, rare in nature,

naively expected J = 0

Thanks!

Backup

arxiv:2506.07944

Simulation: JHUGen + Pythia

Discriminant

Production angles

arxiv:2506.07944

(4) production angles consistent with unpolarized resonances

第八届强子谱和强子结构研讨会

Production angles

arxiv:2506.07944

(4) production angles consistent with unpolarized resonances

Lorentz invariant amplitude

arxiv:2506.07944

• Expect three *X* resonances to have the same tensor structure:

$$A(X_{J=0} \rightarrow V_{1}V_{2}) = \begin{pmatrix} a_{1}(q^{2})m_{V}^{2}\epsilon_{1}^{*}\epsilon_{2}^{*} + a_{2}(q^{2})f_{\mu\nu}^{*(1)}f^{*(2),\mu\nu} + a_{3}(q^{2})f_{\mu\nu}^{*(1)}\tilde{f}^{*(2),\mu\nu} \end{pmatrix}$$
recall (22 years):

$$B \rightarrow \varphi K^{*} \text{ expect } A_{00}$$
found ~50% A_{++}
Higgs (12 years):

$$H \rightarrow 4\ell' \Rightarrow 0_{m}^{+}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{++} = A_{--} \text{ at } 2m_{J/\psi} \text{ threshold}$$

$$A_{00} = A_{0} = A_{0} + A_{0} = A_{0} + A_{0} + A_{0} = A_{0} + A_{0} + A_{0} = A_{0} + A_{0} = A_{0} + A_{0} + A_{0} = A_{0} + A_{0} = A_{0} + A_{0} = A_{0} + A_{0} + A_{0} = A_{0} + A_{0} + A_{0} + A_{0} + A_{0} = A_{0} + A_{0$$

Lorentz invariant amplitude

arxiv:2506.07944

• Expect three *X* resonances to have the same tensor structure:

$$A(X_{J=2} \rightarrow V_{1}V_{2}) = 2c_{1}(q^{2})t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}(q^{2})t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta\beta} + c_{3}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}(e^{*1}_{1}e^{*2}_{2} + e^{*2}_{1}e^{*2}_{1}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}e^{*e^{*2}_{1}}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}e^{*e^{*2}_{1}}) + c_{8}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*2,\nu}_{\alpha\beta\beta} + c_{10}(q^{2})\frac{\tilde{q}^{\mu}q^{\alpha}}{\Lambda^{2}}t_{\mu\nu}(e^{*1}_{1}e^{*2}_{2}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}e^{*e^{*2}_{1}}) + c_{8}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*2,\nu}_{\alpha\beta\beta} + c_{10}(q^{2})\frac{\tilde{q}^{\mu}q^{\alpha}}{\Lambda^{2}}e_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(e^{*1}_{1}e^{*2}_{1}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}e^{*e^{*2}_{1}}) + c_{8}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*2,\nu}_{\alpha\beta\beta} + c_{10}(q^{2})\frac{\tilde{q}^{\mu}q^{\alpha}}{\Lambda^{2}}e_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(e^{*1}_{1}e^{*2}_{2}) + e^{*1}_{7}(qe^{*1}_{1})) + 2\frac{\tilde{q}}{h}$$

$$(A_{++} = -A_{--}) - (A_{+-} - A_{--}) = -A_{0-}) = A_{0+} + A_{-0} = A_{0+} + A_{-0} = A_{0+} + A_{-0} = -A_{0-}) = -A_{0-})$$

$$(A_{++} = -A_{--}) = -A_{0-} + A_{0+} + A_{-0} = A_{0+} + A_{-} + A_{-} + A_{-} + A_{0+} +$$

第八届强子谱和强子结构研讨会

Results of $J^P vs. 2_m^+$

			Observed p-value Z-score		Expected p-value Z-score		most likely		
	$0^- \operatorname{vs} 2_m^+$	$0^{-} 2_{m}^{+}$	$2.7 \times 10^{-13} \\ 4.2 \times 10^{-1}$	7.2 0.2	6.5×10^{-14} 0.50	7.4 0.0	-J - J > 2 possible but highly unlikely		
	$0_m^+ \operatorname{vs} 2_m^+$	$0^+_m \ 2^+_m$	$\begin{array}{c} 4.3\times 10^{-5} \\ 7.2\times 10^{-2} \end{array}$	3.9 1.5	$5.6 imes 10^{-9} \\ 0.50$	5.7 0.0	require $L \ge 2$		
	$0^+_{ m mix}$ vs 2^+_m	$0^+_{ m mix}$ 2^+_m	$\begin{array}{c} 1.4 \times 10^{-2} \\ 1.7 \times 10^{-1} \end{array}$	2.2 1.0	$\begin{array}{c} 8.4\times10^{-4}\\ 0.50\end{array}$	3.1 0.0	$-J \neq 0$ at > 95 % CL		
	$0^+_h \operatorname{vs} 2^+_m$	$egin{array}{c} 0_h^+\ 2_m^+ \end{array}$	$\begin{array}{c} 3.1 \times 10^{-9} \\ 9.0 \times 10^{-1} \end{array}$	5.8 -1.3	$8.5 imes 10^{-5} \\ 0.50$	3.8 0.0			
	$1^{-} \operatorname{vs} 2_{m}^{+}$	$1^{-} 2^{+}_{m}$	$8.0 imes 10^{-8} \ 3.8 imes 10^{-1}$	5.2 0.3	$6.4 imes 10^{-9} \\ 0.50$	5.7 0.0			
	1^+ vs 2_m^+	$1^+ 2^+_m$	$\begin{array}{c} 4.7\times 10^{-3} \\ 5.2\times 10^{-2} \end{array}$	2.6 1.6	$2.7 imes 10^{-5} \\ 0.50$	4.0 0.0	$-J \neq 1$ at > 99 % CL		
_	$2_m^- \operatorname{vs} 2_m^+$	$2_m^- 2_m^+$	$\begin{array}{c} 4.1 \times 10^{-12} \\ 2.8 \times 10^{-1} \end{array}$	6.8 0.6	$3.9 imes 10^{-14} \\ 0.50$	7.5 0.0			
	$2^{ m mix} { m vs} 2^+_m$	$2^{ m mix}$ 2^+_m	$6.5 imes 10^{-4} \ 3.1 imes 10^{-1}$	3.2 0.5	$\begin{array}{c} 1.5\times10^{-4}\\ 0.50\end{array}$	3.6 0.0	$P \neq -1$ very certain (exclude I^{-+} including $I > 1$		
	$2_h^- \operatorname{vs} 2_m^+$	$2_{h}^{-} \ 2_{m}^{+}$	$\begin{array}{c} 2.2 \times 10^{-8} \\ 4.3 \times 10^{-1} \end{array}$	5.5 0.2	$6.3 imes 10^{-9} \\ 0.50$	5.7 0.0			

Data analysis

arxiv:2506.07944

(1) empirical $m_{4\mu}$ spectrum \rightarrow for signal and background

 $- J/\psi J/\psi$ single- and double-parton scattering

- empirical threshold enhancement (signal-like MC)

