

第八届强子谱与强子结构研讨会

Phys. Rev. D 111 (2025) 016004

# The $\Lambda_c^+ \rightarrow \eta \pi^+ \Lambda$ reaction and the $\Lambda a_0^+$ (980) and $\pi^+ \Lambda$ (1670) contributions

### 吕文韬 郑州大学

合作者: 段漫玉, 肖楮文, 王恩, 谢聚军, 陈殿勇, Eulogio Oset

2025年7月13日@桂林

### Background





Nature Rev. Phys. 1, 480 (2019)

# Low-lying baryons with J<sup>P</sup>=1/2<sup>-</sup>



|         |            | W    | orkma           | n R       | L, et | <i>al.</i> , R | eviev     | v of | Partic                    | le P      | hysi | cs (202                          | 4).           |     |
|---------|------------|------|-----------------|-----------|-------|----------------|-----------|------|---------------------------|-----------|------|----------------------------------|---------------|-----|
| p       | $1/2^{+}$  | **** | <b>∆</b> (1232) | 3/2+      | ****  | $\Sigma^+$     | $1/2^{+}$ | **** | $\Lambda_c^+$             | $1/2^{+}$ | **** | $\Lambda_{b}^{0}$                | $1/2^{+}$     | *** |
| n       | $1/2^{+}$  | **** | $\Delta(1600)$  | $3/2^{+}$ | ****  | $\Sigma^0$     | $1/2^{+}$ | **** | $\Lambda_{c}(2595)^{+}$   | $1/2^{-}$ | ***  | $\Lambda_{b}(5912)^{0}$          | $1/2^{-}$     | *** |
| N(1440) | $1/2^{+}$  | **** | $\Delta(1620)$  | $1/2^{-}$ | ****  | $\Sigma^{-}$   | $1/2^{+}$ | **** | $\Lambda_{c}(2625)^{+}$   | $3/2^{-}$ | ***  | $\Lambda_{b}(5920)^{0}$          | 3/2-          | *** |
| N(1520) | $3/2^{-}$  | **** | $\Delta(1700)$  | $3/2^{-}$ | ****  | $\Sigma(1385)$ | $3/2^{+}$ | **** | $\Lambda_{c}(2765)^{+}$   |           | *    | $\Lambda_{b}(6070)^{0}$          | $1/2^{+}$     | *** |
| N(1535) | $1/2^{-}$  | **** | $\Delta(1750)$  | $1/2^{+}$ | *     | $\Sigma(1580)$ | $3/2^{-}$ | *    | $\Lambda_{c}(2860)^{+}$   | $3/2^{+}$ | ***  | $\Lambda_{b}(6146)^{0}$          | $3/2^{+}$     | *** |
| N(1650) | $1/2^{-}$  | **** | $\Delta(1900)$  | $1/2^{-}$ | ***   | Σ(1620)        | $1/2^{-}$ | *    | $\Lambda_{c}(2880)^{+}$   | $5/2^{+}$ | ***  | $\Lambda_b(6152)^0$              | $5/2^{+}$     | *** |
| N(1675) | $5/2^{-}$  | **** | $\Delta(1905)$  | $5/2^{+}$ | ****  | $\Sigma(1660)$ | $1/2^{+}$ | ***  | $\Lambda_{c}(2910)^{+}$   |           | *    | $\Sigma_b$                       | $1/2^{+}$     | *** |
| N(1680) | $5/2^{+}$  | **** | $\Delta(1910)$  | $1/2^{+}$ | ****  | $\Sigma(1670)$ | $3/2^{-}$ | **** | $\Lambda_{c}(2940)^{+}$   | $3/2^{-}$ | ***  | $\Sigma_{b}^{*}$                 | 3/2+          | *** |
| N(1700) | $3/2^{-}$  | ***  | $\Delta(1920)$  | 3/2+      | ***   | $\Sigma(1750)$ | $1/2^{-}$ | ***  | $\Sigma_c(2455)$          | $1/2^{+}$ | **** | $\Sigma_{b}(6097)^{+}$           |               | *** |
| N(1710) | $1/2^{+}$  | **** | $\Delta$ (1930) | $5/2^{-}$ | ***   | $\Sigma(1775)$ | $5/2^{-}$ | **** | $\Sigma_{c}(2520)$        | $3/2^{+}$ | ***  | $\Sigma_{b}(6097)^{-}$           |               | *** |
| N(1720) | $3/2^{+}$  | **** | $\Delta(1940)$  | $3/2^{-}$ | **    | $\Sigma(1780)$ | $3/2^{+}$ | *    | $\Sigma_{c}(2800)$        |           | ***  | $\Xi_{b}^{-}$                    | $1/2^{+}$     | *** |
| N(1860) | $5/2^{+}$  | **   | $\Delta(1950)$  | $7/2^{+}$ | ****  | $\Sigma(1880)$ | $1/2^{+}$ | **   | $\Xi_c^+$                 | $1/2^{+}$ | ***  | $= \tilde{b}$                    | $1/2^{+}$     | *** |
| N(1875) | $3/2^{-}$  | ***  | $\Delta(2000)$  | $5/2^{+}$ | **    | $\Sigma(1900)$ | $1/2^{-}$ | **   | =0                        | $1/2^{+}$ | **** | $\Xi'_{k}(5935)^{-}$             | $1/2^{+}$     | *** |
| N(1880) | $1/2^{+}$  | ***  | $\Delta(2150)$  | $1/2^{-}$ | *     | $\Sigma(1910)$ | $3/2^{-}$ | ***  | $\Xi'^+$                  | $1/2^{+}$ | ***  | $\Xi_{h}(5945)^{0}$              | $3/2^{+}$     | *** |
| N(1895) | $1/2^{-}$  | **** | $\Delta(2200)$  | 7/2       | ***   | $\Sigma(1915)$ | $5/2^{+}$ | **** | ="0"                      | $1/2^{+}$ | ***  | $\Xi_{h}(5955)^{-}$              | 3/2+          | *** |
| N(1900) | $3/2^{+}$  | **** | $\Delta(2300)$  | 9/2+      | **    | $\Sigma(1940)$ | $3/2^{+}$ | *    | $\Xi_{c}(2645)$           | $3/2^{+}$ | ***  | $\Xi_{b}(6087)^{0}$              | 3/2-          | *** |
| N(1990) | $7/2^{+}$  | **   | $\Delta$ (2350) | 5/2       | *     | $\Sigma(2010)$ | 3/2       | *    | $\Xi_{c}(2790)$           | $1/2^{-}$ | ***  | $\Xi_{b}(6095)^{0}$              | 3/2-          | *** |
| N(2000) | $5/2^{+}$  | **   | $\Delta(2390)$  | $7/2^{+}$ | *     | Σ(2030)        | 7/2+      | **** | $\Xi_{c}(2815)$           | $3/2^{-}$ | ***  | $\Xi_{b}(6100)^{-}$              | 3/2-          | *** |
| N(2040) | $3/2^{+}$  | *    | $\Delta$ (2400) | 9/2       | **    | $\Sigma(2070)$ | 5/2+      | *    | $\Xi_{c}(2882)$           | ,         | *    | $\Xi_{b}(6227)^{-}$              | ,             | *** |
| N(2060) | 5/2        | ***  | $\Delta$ (2420) | $11/2^+$  | ****  | $\Sigma(2080)$ | $3/2^{+}$ | *    | $\Xi_{c}(2923)$           |           | **   | $\Xi_{b}(6227)^{0}$              |               | *** |
| N(2100) | $1/2^{+}$  | ***  | $\Delta(2750)$  | 13/2      | **    | $\Sigma(2100)$ | $7/2^{-}$ | *    | $\Xi_{c}(2930)$           |           | **   | $\Xi_{b}(6327)^{0}$              |               | *** |
| N(2120) | $3/2^{-}$  | ***  | $\Delta$ (2950) | $15/2^+$  | **    | $\Sigma(2110)$ | $1/2^{-}$ | *    | $\Xi_{c}(2970)$           | $1/2^{+}$ | ***  | $\Xi_{b}(6333)^{0}$              |               | *** |
| N(2190) | 7/2        | **** |                 |           |       | Σ(2230)        | 3/2+      | *    | $\Xi_{c}(3055)$           | ,         | ***  | $\Omega_{h}^{-}$                 | $1/2^{+}$     | *** |
| N(2220) | 9/2+       | **** | Λ               | $1/2^{+}$ | ****  | $\Sigma(2250)$ |           | **   | $\Xi_{c}(3080)$           |           | ***  | $\Omega_{b}^{-}(6316)^{-}$       | ,             | *** |
| N(2250) | 9/2-       | **** | <i>Л</i> (1380) | $1/2^{-}$ | **    | Σ(2455)        |           | *    | $\Xi_{c}(3123)$           |           | *    | $\Omega_{h}(6330)^{-}$           |               | *** |
| N(2300) | $1/2^{+}$  | **   | Λ(1405)         | $1/2^{-}$ | ****  | $\Sigma(2620)$ |           | *    | $\Omega_{c}^{0}$          | $1/2^{+}$ | ***  | $\Omega_{b}(6340)^{-}$           |               | *** |
| N(2570) | $5/2^{-}$  | **   | A(1520)         | 3/2-      | ****  | Σ(3000)        |           | *    | $\Omega_{c}^{(2770)^{0}}$ | $3/2^{+}$ | ***  | $\Omega_b(6350)^-$               |               | *** |
| N(2600) | $11/2^{-}$ | ***  | A(1600)         | 1/2+      | ****  | Σ(3170)        |           | *    | $\Omega_{c}(3000)^{0}$    | /         | ***  | 5(1111)                          |               |     |
| N(2700) | $13/2^{+}$ | **   | $\Lambda(1670)$ | $1/2^{-}$ | ****  | - 0            |           |      | $\Omega_{c}(3050)^{0}$    |           | ***  | $P_{c\overline{c}}(4312)^{+}$    |               | *   |
|         |            |      | A(1690)         | 3/2       | ****  | =0             | $1/2^{+}$ | **** | $\Omega_{c}(3065)^{0}$    |           | ***  | $P_{c\overline{c}s}(4338)^{(1)}$ | $^{0}1/2^{-}$ | *   |
|         |            |      | <i>Л</i> (1710) | $1/2^{+}$ | *     | $\Xi^{-}$      | 1/2+      | **** | $\Omega_{c}(3090)^{0}$    |           | ***  | $P_{c\bar{c}}(4380)^+$           | ,             | *   |

These exotic properties of the low-lying excited baryons with the quantum numbers of spinparity  $J^P = 1/2^-$  are difficult to explain in the simple quenched quark model. EW-Geng-Wu-Xie-Zou, CPL. 41 (2024) 101401

| Zou, EPJA 35 (2008) 325                                                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Mass pattern : quenched or unquenched ?                                 |  |  |  |  |  |  |  |
| uds (L=1) 1/2 <sup>-</sup> ~ A*(1670)~ [us][ds] s                       |  |  |  |  |  |  |  |
| uud (L=1) 1/2 <sup>-</sup> ~ N*(1535) ~ [ud][us] s                      |  |  |  |  |  |  |  |
| uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$       |  |  |  |  |  |  |  |
| uus (L=1) 1/2 <sup>-</sup> ~ $\Sigma^*(1390)$ ~ [us][ud] $\overline{d}$ |  |  |  |  |  |  |  |
| Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035                     |  |  |  |  |  |  |  |

**N**\*(1535) large couplings  $g_{N^*N\eta}$ ,  $g_{N^*K\Lambda}$ ,  $g_{N^*N\eta}$ ,  $g_{N^*N\eta}$ ,  $g_{N^*N\phi}$  $\Lambda^*(1670)$  large coupling  $g_{\Lambda^*\Lambda\eta}$ 

#### **Report of Bing-Song Zou**

\*\*\*\* Existence is certain, and properties are at least fairly explored.

\*\*\* Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

\*\* Evidence of existence is only fair.

Evidence of existence is poor.

# The spectrum shape of $\Lambda(1670)$





# Background



- PART of theoretical explanations of spectrum shape of Λ(1670)
   Cusp:
  - Phys. Rev. D 100 (2019) 054006: Considering the Triangle mechanism ( $a_0$ -loop and  $\Sigma(1660)$ -loop) Eur. Phys. J. C (2024) 84:1253 : Considering the Triangle mechanism ( $a_0$ -loop) Phys. Lett. B 857 (2024) 139003 : Considering the meson-baryon rescattering
- ➢ Dip:

Phys. Rev. C 92 (2015) 025205: Comprehensive partial-wave analysis of  $K^-p$  reactions Nucl. Phys. B 119 (1977) 362-400: Partial wave analyses of  $\overline{K}N$  two-body reactions

> Peak :

Phys. Rev. D 106 (2022) 056001: Considering the meson-baryon rescatteringPhys. Rev. D 110 (2024) 054020: Considering the meson-baryon rescattering

### Scalar meson



### □ Masses puzzle

Traditional quark model

 $f_0(500) \approx a_0(980) < K_0^*(700) < f_0(980)$ 

> Experiment

$$f_0(500) < K_0^*(700) < a_0(980) < f_0(980)$$

The light scalar meson  $a_0(980)$  has been explained to be either a molecular state, a tetraquark state, a conventional  $q\overline{q}$  meson, or the mixing of different components.

# **D** PART of theoretical interpretation of $a_0(980)$

>  $K\overline{K}$  molecular state:

Phys. Rev. Lett. 48 (1982) 659 Phys. Rev. D 41 (1990) 2236

- Compact tetraquark state:
   Phys. Rev. Lett. 92 (2004) 102001
   Eur. Phys. J. A 30 (2006) 423-426
   Phys. Rev. Lett. 111 (2013) 062001
- Dynamically generated states:
   Phys. Rev. D 52 (1995) 2690
   Phys. Lett. B 803 (2020) 135279
   Phys. Lett. B 846 (2023) 138185

# Analysis the Belle data







Belle Collaboration, PRD 103 (2021) 052005

PRD 106 (2022) 056001

# **Reanalysis the Belle data**





# The BESIII measurement



#### $\Box$ In 2025, $\Lambda_c^+ \rightarrow \Lambda \eta \pi^+$ has been posteriorly measured by the BESIII **Collaboration** BESIII Collaboration, Phys. Rev. Lett. 134 (2025) 021901 200 + sWeighted data + sWeighted data Events / (0.025 GeV/c<sup>2</sup>) Events / (0.020 GeV/c<sup>2</sup>) Events / (0.021 GeV/c<sup>2</sup>) — Total fit Baseline model 40 200 $- \Lambda a_0(980)^+$ 100 Model A Events / 0.080 $\Lambda NR_{0^+}(\pi^+\eta)$ Model B 100 $-\Sigma(1385)^{+}\eta$ $-\Lambda(1670)\pi^+$ 50 100 Total interference 1.8 -0.5 0.5 0.8 0.9 1.3 1.5 1.6 1.7 0 0.7 1.4 1.1 $M_{\pi^+n}$ (GeV/ $c^2$ ) $M_{\Lambda n} \,({\rm GeV}/c^2)$ $\cos(\theta_{\gamma^{*+}})$ $M_{\Lambda\pi^+}$ (GeV/c<sup>2</sup>)

TABLE II. Fit results of FFs and statistical significances for different components in alternative models including  $\Sigma(1380)^+$ . The total FFs are 115.8% and 119.8% for models A and B, respectively. The uncertainties are statistical only.

| Process                         | Model A                    | Model B                    |
|---------------------------------|----------------------------|----------------------------|
| $\overline{\Lambda a_0(980)^+}$ | $52.9 \pm 4.5(13.4\sigma)$ | $50.6 \pm 8.0(11.1\sigma)$ |
| $\Sigma(1385)^+\eta$            | $36.6 \pm 2.6(15.8\sigma)$ | $31.3 \pm 3.0(14.6\sigma)$ |
| $\Lambda(1670)\pi^+$            | $10.7 \pm 1.4(15.0\sigma)$ | $9.0 \pm 1.6(11.9\sigma)$  |
| $\Sigma(1380)^{+}\eta$          | $15.5 \pm 4.4(6.1\sigma)$  | $17.7 \pm 5.7(3.3\sigma)$  |
| $\Lambda NR_{0^+}$              | ••••                       | $11.3 \pm 4.4(4.2\sigma)$  |



In spite of the small signal seen in the Dalitz plot, the analysis reports a branching fraction of approximately 50% for the  $\Lambda a_0^+$ (980) decay mode.

#### Belle Collaboration, PRD 103 (2021) 052005



**Quark level diagram** 



### **Hadronization**

$$\begin{split} \Lambda_{c}^{+} &= \frac{1}{\sqrt{2}} c(ud - du) \chi_{MA} \to \pi^{+} \frac{1}{\sqrt{2}} s(ud - du) \chi_{MA} \\ &= \pi^{+} \sum_{i} \frac{1}{\sqrt{2}} s \bar{q}_{i} q_{i} (ud - du) \chi_{MA} \\ &= \frac{1}{\sqrt{2}} \pi^{+} \sum_{i} P_{3i} q_{i} (ud - du) \chi_{MA} \\ &= \frac{1}{\sqrt{2}} \pi^{+} \left\{ K^{-} (uud - udu) + \bar{K}^{0} (dud - ddu) \\ &- \frac{\eta}{\sqrt{3}} (sud - sdu) \right\}, \end{split}$$

$$H = \pi^{+} \left\{ \frac{1}{\sqrt{2}} K^{-} p + \frac{1}{\sqrt{2}} \bar{K}^{0} n + \frac{1}{3} \eta \Lambda \right\}$$



### Mechanisms for tree level and rescattering



### The mechanisms from the intermediate $\Sigma(1385)$



Spin flip part

ţ.



### □ The total decay amplitude

 $t = t_1 + t_2,$ 

$$t_{1} = A \left\{ h_{\pi^{+}\eta\Lambda} + h_{\pi^{+}\eta\Lambda}G_{\eta\Lambda}(M_{\mathrm{inv}}(\eta\Lambda))t_{\eta\Lambda,\eta\Lambda}(M_{\mathrm{inv}}(\eta\Lambda)) + h_{\pi^{+}\eta\Lambda}G_{\pi^{+}\eta}(M_{\mathrm{inv}}(\pi^{+}\eta))t_{\pi^{+}\eta,\pi^{+}\eta}(M_{\mathrm{inv}}(\pi^{+}\eta)) + h_{\pi^{+}\bar{K}N}G_{K^{-}p}(M_{\mathrm{inv}}(\eta\Lambda))t_{K^{-}p,\eta\Lambda}(M_{\mathrm{inv}}(\eta\Lambda)) + h_{\pi^{+}\bar{K}N}G_{\bar{K}^{0}n}(M_{\mathrm{inv}}(\eta\Lambda))t_{\bar{K}^{0}n,\eta\Lambda}(M_{\mathrm{inv}}(\eta\Lambda)) + \frac{\beta}{M_{\Lambda}}\frac{2}{3}\vec{P}_{\pi}^{*}\cdot\vec{P}_{\eta}^{*}D \right\},$$

$$h_{\pi^+\eta\Lambda} = \frac{1}{3}; \quad h_{\pi^+\bar{K}N} = \frac{1}{\sqrt{2}},$$
$$t_2 = -\frac{i}{3} \frac{A\beta}{M_\Lambda} \epsilon_{ijs} \sigma_s \vec{P}^*_{\pi i} \vec{P}^*_{\eta j} D,$$

 $K^- p \quad \bar{K}^0 n \quad \pi^0 \Lambda \quad \pi^0 \Sigma^0 \quad \eta \Lambda \quad \eta \Sigma^0 \quad \pi^+ \Sigma^- \quad \pi^- \Sigma^+ \quad K^+ \Xi^- \quad K^0 \Xi^0$ 

**\Box** The  $\Lambda(1670)$  amplitudes

Nucl. Phys. A 635 (1998) 99-120

$$V_{ij} = -C_{ij}\frac{1}{4f^2}(k^0 + k'^0)$$

$$T = [1 - VG]^{-1}V,$$



### **\Box** The $a_0(980)$ amplitudes

$$K^+\overline{K}^0$$
 (1) and  $\pi^+\eta$  (2)

$$V_{11} = -\frac{s}{4f^2}, \quad (f = 93 \text{ MeV}),$$
  

$$V_{12} = -\frac{1}{3\sqrt{3}f^2}(3s - 2m_K^2 - m_\eta^2),$$
  

$$V_{22} = -\frac{2m_\pi^2}{3f^2},$$

### **D** The cutoff method

$$\begin{split} G(s) = & \frac{1}{16\pi^2 s} \left\{ \sigma \left( \arctan \frac{s + \Delta}{\sigma \lambda_1} + \arctan \frac{s - \Delta}{\sigma \lambda_2} \right) \\ & - \left[ (s + \Delta) \ln \frac{q_{\max} \left( 1 + \lambda_1 \right)}{m_1} \right. \\ & \left. + (s - \Delta) \ln \frac{q_{\max} \left( 1 + \lambda_2 \right)}{m_2} \right] \right\}, \end{split}$$

$$\sigma = \left[ -\left(s - (m_1 + m_2)^2\right) \left(s - (m_1 - m_2)^2\right) \right]^{1/2},$$

$$\Delta = m_1^2 - m_2^2,$$

**$$\Box$$** The  $a_0(980)$  amplitudes

 $M_{cut} = 1050 \text{ MeV}$ 

$$Gt(M_{\rm inv}) = Gt(M_{\rm cut})e^{-\alpha(M_{\rm inv}-M_{\rm cut})}, \text{ for } M_{\rm inv} > M_{\rm cut}$$

$$\lambda_1 = \sqrt{1 + \frac{m_1^2}{q_{\max}^2}}, \quad \lambda_2 = \sqrt{1 + \frac{m_2^2}{q_{\max}^2}},$$

### Results



### $\Box$ The invariant mass distributions of the $\Lambda_c^+ \to \Lambda \eta \pi^+$ decay



# Formalism-internal emission



**Quark level diagram** 



### **Hadronization**

$$\frac{1}{\sqrt{2}}c(ud - du)\chi_{MA} \to \frac{1}{\sqrt{2}}\bar{K}^{0}(u\bar{q}_{i}q_{i}(ud - du))\chi_{MA} \\
= \frac{1}{\sqrt{2}}\bar{K}^{0}\left\{\left(\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}}\right)u(ud - du) + \pi^{+}d(ud - du) \\
+K^{+}s(ud - du)\right\}\chi_{MA} \\
= \frac{\bar{K}^{0}}{\sqrt{2}}\left\{\left(\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{3}}\right)p + \pi^{+}n - \sqrt{\frac{2}{3}}K^{+}\Lambda\right\}\chi_{MA},$$

**D** The internal emission amplitudes

$$\begin{split} t^{\rm ie} &= \gamma h_{\bar{K}^0 K^+ \Lambda} G_{\bar{K}^0 K^+} (M_{\rm inv} (\pi^+ \eta)) t_{\bar{K}^0 K^+, \pi^+ \eta} (M_{\rm inv} (\pi^+ \eta)), \\ & \gamma = -\frac{1}{3} \\ & h_{\bar{K}^0 K^+ \Lambda} = -\frac{1}{\sqrt{3}}, \end{split}$$

### Results



### $\Box$ The invariant mass distributions of the $\Lambda_c^+ \rightarrow \Lambda \eta \pi^+$ decay







- ➤ The consideration of the  $a_0(980)$  and  $\Lambda(1670)$  as dynamically generated has allowed us to find a reasonable description of the invariant mass distributions for the  $\Lambda_c^+ \rightarrow \eta \pi^+ \Lambda$ .
- > While the spin flip part of the  $\Sigma(1385)$  contribution appears with a strength of 1/4 with respect to the non spin flip part in the mass distributions, the different dependence on the invariant masses of these two terms, makes them to show up with different shapes in the mass distributions.

# Thank you very much!