

Theoretical study of N(1535) and $a_0(980)$ in the process $\Lambda_c^+ \to \pi^+ \eta n$

李孟源 郑州大学 合作者:吕文韬 刘利娟 王恩

Phys. Rev. D 111 (2025) 3, 034046

第八届强子谱和强子结构研讨会@广西桂林 2025年7月14日

✓ Conventional hadrons

Baryon

✓ Exotic hadrons

$$N(1535) I(J^P) = 1/2(1/2^-)$$

✓ Mass reverse problem

$$N(1535) J^P = 1/2^- n=1 L=1$$

$$N(1440) J^P = 1/2^+ n=2 L=0$$

$$N(1535) J^P = 1/2^-$$

95 MeV
 $N(1440) J^P = 1/2^+$

High mass vs. N(1440)

✓ Theoretical interpretation

admixing of the [ud][us]s pentaquark component:
 C. Helminen and D. O. Riska, Nucl. Phys. A699, 624 (2002)
 B. S. Zou, Eur. Phys. J. A 35, 325 (2008)

■ three-quark core:

- Z. W. Liu et al. Phys. Rev. Lett. 116, 082004 (2016)
- C. D. Abellet al. Phys. Rev. D 108, 094519 (2023)

dynamically generated state:

P. C. Bruns et al. Phys. Lett. B 697, 254 (2011)

K. P. Khemchandani et al. Phys. Rev. D 88, 114016 (2013)

Y. Li, S. W. Liu et al. Phys. Rev. D 110 (2024) 7, 074010 3

$$a_0(980) \ I^G(J^{PC}) = 1^-(0^{++})$$

- ✓ Flavor-wave functions
 - $f_0(500) = 1/\sqrt{2}(u\overline{u} + d\overline{d})$ $a_0(980) = 1/\sqrt{2}(u\overline{u} d\overline{d})$ $K_0^*(700) = d\overline{s}$ $f_0(980) = c_1(u\overline{u} + d\overline{d}) + c_2(s\overline{s})$
- ✓ Conventional quark model

 $f_0(500) \approx a_0(980) < K_0^*(700) < f_0(980)$

✓ Experiment

 $f_0(500) < K_0^*(700) < a_0(980) < f_0(980)$

✓ Theoretical interpretation

• $K\overline{K}$ molecular state:

- J. D. Weinstein and N. Isgur, Phys. Rev. Lett. 48 (1982) 659
- J. R. Pelaez, Phys. Rev. Lett. 92 (2004) 102001

■ Compact tetraquark state:

J. R. Pelaez, Phys. Rev. Lett. 92 (2004) 102001

H. J. Lee, Eur. Phys. J. A 30 (2006) 423-426

S. Stone and L. Zhang, Phys. Rev. Lett. 111 (2013) 6, 062001

Dynamically generated states:

G. Janssen, B. C. Pearce et al. Phys. Rev. D 52, 2690 (1995)
J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363 (2015)
R. Molina, J. J. Xie et al. Phys. Lett. B 803 (2020) 135279
X. C. Feng, L. L. Wei et al. Phys. Lett. B 846 (2023) 138185
M. Y. Duan, W. T. Lyu et al. Phys. Rev. D 111 (2025) 1, 016004

✓ Charm baryon decay

 $10^4 B$

 13.6 ± 2.5

 0.59 ± 0.24

 39.3 ± 7.6

 8.24 ± 1.41

 $(4.29 \pm 1.23) \times 10^{-2}$

 3.31 ± 0.97

 3.73 ± 1.11

 $(3.33^{+4.23}_{-3.33}) \times 10^{-3}$

 $(1.24^{+1.62}_{-1.24}) \times 10^{-3}$

 39.6 ± 9.2

 25.8 ± 6.1

CS mode

 $p\eta^0\eta^0$

 $p\pi^+\pi^-$

 pK^+K^-

 $pK^0\bar{K}^0$

 $n\pi^+\pi^0$

 $n\pi^+\eta^0$

 nK^+K^0

 $\Sigma^+ \pi^0 K^0$

 $\Sigma^+ K^0 \eta^0$

 $\Sigma^+ \pi^- K^+$

CS mode

 $\Lambda^0 \pi^0 K^+$

 $\Lambda^0 K^+ \eta^0$

 $\Lambda^0 \pi^+ K^0$

 $\Sigma^0 \pi^0 K^+$

 $\Sigma^0 K^+ \eta^0$

 $\Sigma^0 \pi^+ K^0$

 $\Sigma^{-}\pi^{+}K^{+}$

 $\Xi^- K^+ K^+$

 $\Xi^{0}K^{+}K^{0}$

 $p\pi^0\pi^0$

 $p\pi^0\eta^0$

	Channels	Data	Our fittings	Channels	Data	Our fittings
$10^4 \mathcal{B}$	$10^2 \mathcal{B}(\Lambda^+_{+} \to p \pi^+ K^-)$	3.4 ± 0.4	3.4 ± 0.4	$10^2 \mathcal{B}(\Lambda^+_+ \to \Sigma^+ \pi^0 \pi^0)$	1.3 ± 0.1	1.3 ± 0.1
4.46 ± 1.18	$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+ \bar{K}^0)$	5.6 ± 1.1	5.9 ± 1.0	$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^- K^+)$	1.0 ± 0.1	1.0 ± 0.1
46.4 ± 3.0	$10^2 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^+ \eta^0)$	1.8 ± 0.3	1.9 ± 0.3	$10^4 \mathcal{B}(\Lambda_c^+ \to nK^+ \bar{K}^0)$	$8.6^{+3.8}_{-3.0}$	6.5 ± 2.2
4.82 ± 1.05	$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 \pi^0 K^+)$	1.5 ± 0.3	1.4 ± 0.3	$10^2 \mathcal{B}(\Lambda_c^+ \to p \pi^0 K_s^0)$	1.9 ± 0.1	1.9 ± 0.1
3.53 ± 1.68	$10^2 \mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-)$	2.9 ± 0.5	2.8 ± 0.5	$10^2 \mathcal{B}(\Lambda_c^+ \to n\pi^+ K_s^0)$	1.9 ± 0.1	1.9 ± 0.1
25.3 ± 5.5	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^- \pi^+ \pi^+)$	1.9 ± 0.2	2.0 ± 0.2	$10^2 \mathcal{B}(\Xi_c^+ \to \Sigma^+ \pi^+ K^-)$	2.6 ± 1.2	3.9 ± 0.4
45.2 ± 12.1	$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0)$	2.2 ± 0.8	1.0 ± 0.1	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+ \pi^0)$	6.7 ± 3.5	1.0 ± 0.3
6.54 ± 2.17	$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+ \eta^0)$	8.2 ± 0.9	8.3 ± 0.8	$10^3 \mathcal{B}(\Xi_c^+ \to \Sigma^+ \pi^+ \pi^-)$	14.0 ± 8.0	6.5 ± 1.6
3.46 ± 1.01	$10^3 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^- K^+)$	2.0 ± 0.4	1.6 ± 0.3	$10^3 \mathcal{B}(\Xi_c^+ \to \Sigma^- \pi^+ \pi^+)$	5.1 ± 3.4	6.9 ± 2.3
$(8.38 \pm 2.40) \times 10^{-2}$	$10^3 \mathcal{B}(\Lambda_c^+ \to \Xi^- \pi^+ K^+)$	3.3 ± 0.9	1.5 ± 0.5	$10^3 \mathcal{B}(\Xi_c^+ \to \Sigma^+ K^+ K^-)$	4.2 ± 2.5	0.4 ± 0.2
$(0.50 \pm 2.40) \times 10$	$10^3 \mathcal{B}(\Lambda_c^+ \to p \pi^+ \pi^-)$	4.7 ± 0.3	4.6 ± 0.3	$10^2 \mathcal{B}(\Xi_c^0 \to \Lambda^0 \pi^+ K^-)$	1.2 ± 0.4	1.3 ± 0.3
10.1 ± 5.0	$10^4 \mathcal{B}(\Lambda_c^+ \to pK^+K^-)$	5.2 ± 1.2	4.8 ± 1.0	$10^4 \mathcal{B}(\Xi_c^0 \to \Lambda^0 K^+ K^-)$	5.1 ± 1.9	4.5 ± 0.7
	$10^2 \mathcal{B}(\Lambda_c^+ \to p \bar{K}^0 \eta^0)$	0.8 ± 0.2	0.7 ± 0.1	$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^0 K^+ K^-)$	0.7 ± 0.2	1.0 ± 0.1
	$10^3 \mathcal{B}(\Lambda_c^+ \to \Xi^0 \pi^0 K^+)$	7.8 ± 1.6	8.0 ± 1.5	$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	2.9 ± 1.3	4.0 ± 1.1

TABLE I.	The experimental	data from	Refs. [1-5	5,7-14,44-50]	and reproductions	for $\mathcal{B}($	$\mathbf{B}_c \to \mathbf{B}_n$	PP').
----------	------------------	-----------	------------	---------------	-------------------	--------------------	---------------------------------	-------

C. Q. Geng, C. W. Liu and S. L. Liu, Phys. Rev. D 109 (2024) 9, 093002

✓ Chiral unitary approach ----Coupled channel Bethe-Salpeter equation

$$T = V + T = [1 - VG]^{-1}V$$

N(1535)--dynamically generated by the S-wave meson-baryon interaction

✓ Quark level diagram

✓ Flavor-wave functions of the baryon

$$p = \frac{u(ud - du)}{\sqrt{2}} \qquad n = \frac{d(ud - du)}{\sqrt{2}}$$
$$\Lambda = \frac{u(ds - sd) + d(us - su) - 2s(ud - du)}{\sqrt{2}}$$

✓ Hadronization

$$\Lambda_c^+ = \frac{1}{\sqrt{2}}c(ud - du)$$

$$\Rightarrow \frac{1}{\sqrt{2}}\pi^+ \sum_i d(\overline{u}u + \overline{d}d + \overline{s}s)(ud - du)$$

$$= \frac{1}{\sqrt{2}}\pi^+ \sum_i M_{2i}q_i (ud - du)$$

N(1535)--dynamically generated by the S-wave meson-baryon interaction

✓ Components of the final states

$$\Lambda_{c}^{+} = \pi^{+} (\pi^{-}p - \frac{\sqrt{2}}{2}\pi^{0}n + \frac{\sqrt{3}}{3}\eta n - \frac{\sqrt{6}}{3}K^{0}\Lambda)$$

isospin basis
$$\Lambda_{c}^{+} = \pi^{+} (-\frac{\sqrt{6}}{2}\pi N^{I=\frac{1}{2}} + \frac{\sqrt{3}}{3}\eta N^{I=\frac{1}{2}} - \frac{\sqrt{6}}{3}K\Lambda^{I=\frac{1}{2}})$$

✓ Amplitude

$$\mathcal{M}^{Tree} = h_{\eta n}$$
$$\mathcal{M}^{N(1535)} = h_{\pi N} G_{\pi N} t_{\pi N \to \eta n} + h_{\eta n} G_{\eta N} t_{\eta N \to \eta n} + h_{K\Lambda} G_{K\Lambda} t_{K\Lambda \to \eta n}$$

✓ Final states interaction

7

N(1535)--dynamically generated by the S-wave meson-baryon interaction

✓ Loop function

$$\begin{split} G_{i} &= i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{2M_{i}}{(P-q)^{2} - M_{i}^{2} + i\varepsilon} \frac{1}{q^{2} - m_{i}^{2} + i\varepsilon} \\ G(s) &= \frac{2M}{16\pi^{2}s} \{\sigma(\arctan\frac{s+\Delta}{\sigma\lambda_{1}} + \arctan\frac{s-\Delta}{\sigma\lambda_{2}}) \\ &- [(s+\Delta)ln\frac{q_{max}(1+\lambda_{1})}{m_{1}} \\ &+ [(s-\Delta)ln\frac{q_{max}(1+\lambda_{2})}{m_{2}}]\} \\ \sigma &= [-(s-(M_{i}+m_{i})^{2})(s-(M_{i}-m_{i})^{2})]^{1/2} \\ \lambda_{1} &= \sqrt{1 + \frac{M_{i}^{2}}{q_{max}^{2}}} \qquad \lambda_{2} &= \sqrt{1 + \frac{m_{i}^{2}}{q_{max}^{2}}} \\ \Delta &= M_{i}^{2} - m_{i}^{2} \qquad q_{max} = 1150 \text{ MeV} \end{split}$$

Y. Li, S. W. Liu et al. Phys. Rev. D 110 (2024) 7, 074010

✓ Bethe-Salpetere quation

$$T = [1 - VG]^{-1}V$$

$$V_{ij} = -C_{ij} \frac{1}{4f^2} (2\sqrt{s} - M_i - M_j) \times (\frac{M_i + E_i}{2M_i})^{1/2} (\frac{M_j + E_j}{2M_j})^{1/2}$$

TABLE I. The S-wave meson-baryon scattering coefficients [54].

	πN	ηп	$K\Lambda$	KΣ
πΝ	2	0	3/2	-1/2
ηn		0	-3/2	-3/2
KΛ			0	0
$K\Sigma$				2

9

$a_0(980)$ --dynamically generated by the S-wave meson-meson interaction

✓ Quark level diagram

✓ Final states interaction

 $\mathcal{M}^{a_{0}(980)} = h_{\pi^{+}n} G_{\pi^{+}n} t_{\pi^{+}n \to \pi^{+}n} + h_{K^{+}\overline{K}^{0}} G_{K^{+}\overline{K}^{0}} t_{K^{+}\overline{K}^{0} \to \pi^{+}n}$

✓ Amplitude

$$\Lambda_c^+ \Longrightarrow \pi^+ \left(-\frac{\sqrt{6}}{2}\pi N + \frac{\sqrt{3}}{3}\eta N - \frac{\sqrt{6}}{3}K\Lambda\right)$$

$a_0(980)$ --dynamically generated by the S-wave meson-meson interaction

 $\mathcal{M}^{a_0(980)} = h_{\pi^+\eta} \, G_{\pi^+\eta} \, t_{\pi^+\eta \to \pi^+\eta} \, + \, h_{K^+\overline{K}^0} G_{K^+\overline{K}^0} t_{K^+\overline{K}^0 \to \pi^+\eta}$

✓ Loop function

$$G = i \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(P-q)^2 - m_1^2 + i\varepsilon} \frac{1}{q^2 - m_2^2 + i\varepsilon}$$
$$= \int_{0}^{q_{max}} \frac{|\vec{q}|^2 d|\vec{q}|}{(2\pi)^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2 [s - (\omega_1 + \omega_2)^2 + i\varepsilon]}$$

 $q_{max} = 600 \text{ MeV}$

J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363 (2015)

✓ Bethe-Salpetere quation

$$T = [1 - VG]^{-1}V$$

$$V_{K^{+}\overline{K}^{0}\to K^{+}\overline{K}^{0}} = -\frac{S}{4f^{2}}$$

$$V_{K^{+}\overline{K}^{0}\to\pi^{+}\eta} = -\frac{3s - 2m_{K}^{2} - m_{\eta}^{2}}{3\sqrt{3}f^{2}}$$

$$V_{\pi^{+}\eta\to\pi^{+}\eta} = -\frac{2m_{K}^{2}}{3f^{2}} \quad (f = 93 \text{ MeV})$$

Results

✓ The invariant mass distributions with phase interference

 $\mathcal{M} = \mathcal{M}^{Tree} + \mathcal{M}^{N(1535)} + \mathcal{M}^{a_0(980)} e^{i\phi}$

(a)(b) $\phi = 0$ $\phi = 0$ $\phi = \frac{1}{3}\pi$ $\phi = \frac{1}{2}\pi$ - $\phi = \frac{2}{3}\pi$ $\phi = \frac{4}{2}\pi$ $\phi = \pi$ $d\Gamma/dM_{\pi+\eta}$ $d\Gamma/dM_{\eta n}$ $\phi = \frac{4}{3}\pi - \cdots - \cdots$ $\phi = \frac{4}{3}\pi - \cdots - \cdots$ $\phi = \frac{5}{3}\pi - - - \phi = \frac{5}{3}\pi - - - M_{\eta n}$ (MeV) $M_{\pi^+\eta}$ (MeV)

Results

✓ The Dalitz plots

- ✓ The significant peak structure in the ηn invariant mass distribution of the decay $\Lambda_c^+ \rightarrow \pi^+ \eta n$ should be related to N(1535).
- ✓ A cusp structure in the $\pi^+\eta$ invariant mass distribution of the decay $\Lambda_c^+ \rightarrow \pi^+\eta n$ should be related to $a_0(980)$.
- ✓ More precise measurement results from future experiments will help us to better understand the nature of N(1535) and $a_0(980)$.

Thanks for your attention!