

On the quantum numbers of the X(1880)

Jia-Li Shi

with Qin-He Yang and Ling-Yun Dai

School of Physics & Eletronics, Hunan University

2025年7月14日

Contents

Background

The amplitudes of J/ψ decay

Results

Summary

J/ψ decay

- There is structure near $p\bar{p}$ threshold on the $\eta'\pi^+\pi^-$ invariant spectrum in $J/\psi \rightarrow \gamma \eta'\pi^+\pi^-$, the X(1835) was firstly discovered by BES. [Phys.Rev.Lett.95:262001(2005)]
- The anomalous structures near $p\bar{p}$ threshold were found in the processes $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, $J/\psi \rightarrow \gamma K^0_S K^0_S \eta$ and $J/\psi \rightarrow \gamma \phi$ by BESIII. [Phys.Rev.D 88(9):091502(2013), Phys.Rev.Lett.95:262001(2005), Phys.Rev.D 97(5):051101(2018)]
- The latest measurement for $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ was performed by BESIII. [Phys.Rev.Lett.132(15):151901(2024)]
 - Higher statistics and more precision.
 - X(1880) and X(1835) are reported.

Threshold effect

We previous work about J/ψ decay

- The combined analysis are perform for $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$, $J/\psi \rightarrow \gamma p \bar{p}$ decay and $p \bar{p} \rightarrow 3(\pi^+ \pi^-)$ according $N \bar{N}$ scattering and DWBA method. [L.Y.Dai Phys.Rev.D98(1):014005(2018)]
- The more processes are included $(J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta)$, and $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ in the combined analysis. [Q.H.-Yang Phys.Rev.D107(3):034030(2023)]

The conclusion in previous work

- The data can described very well according the $N\bar{N}$ scattering at intermediate state.
- \blacksquare No states are found in the origin $N\bar{N}$ scattering amplitude.
- The structures around $p\bar{p}$ threshold in these processes are caused by the $N\bar{N}$ threshold effect.

($\pi^+\pi^-$) invariant mass spectrum

- What is the quantum number of *X*(1880)?(It is an arduous task for experimentalists performing a partial wave analysis)
- Can the more precise data for the $3(\pi^+\pi^-)$ invariant mass spectrum be described by the $N\bar{N}$ scattering at intermediate state?(Can it be more precisely determined that anomalous behaviors around the $p\bar{p}$ threshold for $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ be described by threshold effect?)

[Q.H.-Yang Phys.Rev.D107(3):034030(2023), Phys.Rev.Lett.132(15):151901(2024)]

$N\bar{N}$ scattering

The Feynman diagram for $J/\psi \to \gamma 3 (\pi^+\pi^-)$

Lippmann-Schwinger equation

$$T_{L''L'}(p'',p';E_k) = V_{L''L'}(p'',p') + \sum_L \int \frac{dpp^2}{(2\pi)^3} V_{L''L}(p'',p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}(p,p';E_k)$$

 $V_{L^{\prime\prime}L^{\prime}}(p^{\prime\prime},p^{\prime})$ is SU(2) interaction potential.

The Feynman diagram of $N\bar{N}$ scattering up to N³LO

- Meson exchange potential: one pion, two pion and three pion exchange;
- Contact potential;
- Annihilation potential.

Regulation

Meson exchange potential

- Transform to position space by Fourier transformation
- Regulating in position space by following function

$$f(r) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^6$$

where the cut-off are took R=0.9, 1.0, 1.1, 1.2 fm

Transform to momentum space by inverse Fourier transformation

Contact and annihilation potential

Regulating in momentum space by following function

$$f(p',p) = \exp\left(-\frac{p'^2 + p^2}{\Lambda^2}\right)$$

where the cut off $\Lambda=2R^{-1}$

Two step DWBA

The amplitude of $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ can be obtained through solving the following set of couple equations

$$\begin{split} F_1(Q) &= A_1^0(p') + \int_0^\infty \frac{\mathrm{d}kk^2}{(2\pi)^3} A_1^0(k) \frac{1}{Q - 2E_k + i\epsilon} T(k,p';E_{p'}), \\ F_2(Q) &= A_2^0(p) + \int_0^\infty \frac{\mathrm{d}kk^2}{(2\pi)^3} T(p,k;E_k) \frac{1}{2E_k - Q + i\epsilon} A_2^0(k) \, . \\ F_3(Q) &= A_3^0(Q) + \int_0^\infty \frac{\mathrm{d}kk^2}{(2\pi)^3} F_1(E_k) \frac{1}{Q - 2E_k + i\epsilon} A_2^0(k) \, , \end{split}$$

where the subscript 1, 2, 3 represent the processes of $J/\psi \rightarrow \gamma N \bar{N}$, $N\bar{N} \rightarrow \gamma(\pi^+\pi^-)$, and $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, respectively. The transition Born amplitude and annihilation potential A_i^0 for different partial wave

$$\begin{aligned} A^{0,S}_{1,2}(p) &= \tilde{C}^S_{1,2} + C^S_{1,2}p^2 + D^S_{1,2}p^4 \\ A^{0,P}_{1,2}(p) &= C^P_{1,2}p + D^P_{1,2}p^3 , \\ A^{0,D}_{1,2}(p) &= D^D_{1,2}p^2 , \\ A^0_3(Q) &= \tilde{C}_3 + C_3Q . \end{aligned}$$

The decay rate and cross section

The Lorentz invariant amplitudes $\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)}$ and $\mathcal{M}_{p\bar{p}\to 3(\pi^+\pi^-)}$

$$\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)} = -32\pi^{\frac{7}{2}} \sqrt{E_{\gamma} E_{J/\psi} E_1 E_2 E_3} F_{J/\psi},$$

$$\mathcal{M}_{N\bar{N} \to 3(\pi^+\pi^-)} = -32\pi^{\frac{7}{2}} E_N \sqrt{E_1 E_2 E_3} F_{N\bar{N}}.$$

In order to simplify phase integration, $\pi^+\pi^-$ regard as a whole. $E_i(i = 1, 2, 3)$ denote the energy of three ($\pi^+\pi^-$) in the final state. The decay rate and cross section

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{\mathrm{d}Q} &= \int_{\beta(Q)} \mathrm{d}t_1 \mathrm{d}t_2 \frac{(m_{J/\psi}^2 - Q^2) |\mathcal{M}_{J/\psi \to \gamma 3(\pi^+\pi^-)}|^2}{6144 \tilde{N} \pi^5 m_{J/\psi}^3 Q} \,, \\ \sigma(Q) &= \int_{\beta(Q)} \mathrm{d}t_1 \mathrm{d}t_2 \frac{|\mathcal{M}_{p\bar{p} \to 3(\pi^+\pi^-)}|^2}{1024 \tilde{N} \pi^3 Q^3 \sqrt{Q^2 - 4m_p^2}} \,. \end{aligned}$$

where Q is both the invariant mass $M_{3(\pi^+\pi^-)}$ and the center-mass energy of $N\bar{N}$.

The model parameters

The LECs \tilde{C}_i , C_i and D_i in contact potential, and \tilde{C}_i^a , C_i^a and D_i^a in annihilation potential (The 1S_0 partial wave as a example)

$$V({}^{1}S_{0}) = \tilde{C}_{{}^{1}S_{0}} + C_{{}^{1}S_{0}}(p^{2} + p'^{2}) + D_{{}^{1}S_{0}}^{1}p^{2}p'^{2} + D_{{}^{1}S_{0}}^{2}(p^{4} + p'^{4})$$

$$V_{\text{ann}}({}^{1}S_{0}) = -i(\tilde{C}_{{}^{1}S_{0}}^{a} + C_{{}^{1}S_{0}}^{a}p^{2} + D_{{}^{1}S_{0}}^{a}p'^{4})(\tilde{C}_{{}^{1}S_{0}}^{a} + C_{{}^{1}S_{0}}^{a}p'^{2} + D_{{}^{1}S_{0}}^{a}p'^{4})$$

They are took the results from [L.-Y.Dai JHEP07(2017)]

- \tilde{C}_i, C_i in transition Born amplitude , and annihilation potential A_i^0
- Some normalization factor.

The partial wave

The partial wave and quantum number for $p\bar{p}$ system ($P = (-1)^{L+1}, C = (-1)^{L+S}$)

J = 0		${}^{1}S_{0}(0^{-+})$	${}^{3}P_{0}(1^{++})$	
J = 1	$^{1}P_{1}(1^{+-})$	${}^{3}P_{1}(1^{++})$	${}^{3}S_{1}(1^{})$	$^{3}D_{1}(1^{})$
J=2	$^{1}D_{2}(2^{-+})$	$^{3}D_{2}(2^{})$	${}^{3}P_{2}(1^{++})$	•••

The quantum number of both J/ψ and γ : $J^{PC} = 1^{--}$.

The allowed partial wave of $3(\pi^+\pi^-)$ and $p\bar{p}$ system:

- \blacksquare ${}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{1}D_{2}, {}^{3}P_{2};$
- Higher partial wave are ignored.

The fitting for isospin I = 0, 1 are considered.

The analysis strategy

The analytic strategy for the quantum number of X(1880) as follows

- Fitting all dateset for the amplitude of differential partial wave and isospin.
- The partial wave with the correct quantum numbers should describe all the data well.

The fitting results for *R*=1.0 fm

- The best fitting: I = 0 1S_0 ;
- The sub-optimal fitting: I = 1 ${}^{1}S_{0}$, I = 0 ${}^{3}P_{0}$

Error band

- Bootstrap
- High order estimation

$$\begin{split} \Delta x^{N^{3}LO}(k) &= \max \left(Q^{5} \middle| x^{LO}(k) \right), \\ Q^{3} \middle| x^{LO}(k) - x^{NLO}(k) \middle|, \\ Q^{2} \middle| x^{NLO}(k) - x^{N^{2}LO}(k) \middle|, \\ Q \middle| x^{N^{2}LO}(k) - x^{N^{3}LO}(k) \middle| \right), \end{split}$$

where

$$Q = \max\left(\frac{k}{\Lambda_b}, \ \frac{M_\pi}{\Lambda_b}\right)$$

 $\chi^2_{\rm dof}$

<i>R</i> (fm)	Isospin	$^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{1}D_{2}$	${}^{3}P_{2}$
0.9	I = 0	1.96	7.87	41.51	67.39	20.94
	I = 1	4.53	35.09	30.72	69.05	29.97
1.0	I = 0	1.99	6.74	33.81	66.18	18.58
	I = 1	3.30	31.34	26.38	67.82	25.03
1.1	I = 0	2.04	6.34	25.70	64.78	16.40
	I = 1	3.32	28.00	21.20	66.45	20.85
1.2	I = 0	2.07	6.42	19.80	63.24	14.90
	I = 1	3.22	24.74	17.13	64.94	17.98

- The χ^2 /d.o.f of partial wave I = 0 ¹ S_0 is smallest for different Cut-off.
- The $\chi^2/d.o.f$ of partial wave $I = 1 \ {}^1S_0$ and $I = 0 \ {}^3P_0$ are a little large than $I = 0 \ {}^1S_0$
- The $\chi^2/d.o.f$ for others partial wave are significantly larger.

p-value

The definition of p value for a goodness-of-fit with χ^2

$$p = \int_{\chi^2_{\min}}^{\infty} f(t, n_d) dt \,,$$

 $f(t, n_c)$ is χ^2 probability density function. n_d is the degrees of freedom. The statistic t is defined as

$$t(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{(y_i - \mu_i(\boldsymbol{\theta}))}{\sigma_{\mathrm{tot},i}^2},$$

where y_i is the *i*-th experimental data point and μ_i is the theoretical value. The variance are $\sigma_{\text{tot},i} = \sqrt{\sigma_{\exp,i}^2 + \sigma_{\text{theo},i}^2}$, with the experimental error $\sigma_{\exp,i}$ and theory error $\sigma_{\text{theo},i}$

p-value test

The p-value larger than 0.05 indicated that the fitting results are significantly correlated with the experimental data

<i>R</i> (fm)	Isospin	${}^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{1}D_{2}$	${}^{3}P_{2}$
0.9	I = 0	0.261	0.000	0.000	0.000	0.000
	I = 1	0.000	0.000	0.000	0.000	0.000
1.0	I = 0	0.215	0.000	0.000	0.000	0.000
	I = 1	0.000	0.000	0.000	0.000	0.000
1.1	I = 0	0.168	0.000	0.000	0.000	0.000
	I = 1	0.000	0.000	0.000	0.000	0.000
1.2	I = 0	0.137	0.000	0.000	0.000	0.000
	I = 1	0.000	0.000	0.000	0.000	0.000

Only partial wave I = 0 ¹ S_0 pass p-value test

Summary

- The combine analysis on the processes $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$, $J/\psi \rightarrow \gamma p\bar{p}$ and $p\bar{p} \rightarrow 3(\pi^+\pi^-)$ are performed for the difference partial wave and isospin.
- All datasets can be fitted well for partial wave I = 0 ${}^{1}S_{0}$, and the p-value test is pass. We tend to think that the quantum number of the structure around $p\bar{p}$ threshold, the X(1880), is $IJ^{PC} = 00^{-+}$.
- The X(1880) is generated by the $N\bar{N}$ threshold effect.

Thank you for your patience!