Hydrogenlike molecules composed of D_1D_1 , $D_1D_2^*$ and $D_2^*D_2^*$

Cheng-Rong Deng, Collaborators: Hu-Hua He, Mao-Jun Yan, and Chun-Sheng An

School of Physical Science and Technology Southwest University, Chongqing, China

The 8th Symposium on hadron spectra and structure, Guilin, July 11-15, 2025

- Background
- Quark model
- Wave functions (WF)
- Numerical results and discussion
- 5 Summary

Image: A math a math

1.1 Classification of hadrons

Conventional hadrons

• Exotic hadrons

1.2 New hadrons

Figure 1: Illustration of new hadrons. Taken from Mod.Phys.Lett.A 40, 2530002 (2025).

・ロト ・回ト ・ヨト ・ヨト

1.3 Category of new hadrons

	Category		States/Candidates
Meson-like (incl. tetraquarks)	Hidden Charm	I = 0	$\begin{array}{l} \chi-\text{like: } \underline{\chi_{c1}(3872)}, \\ \chi_{c0}(3860), \underline{\chi_{c0}(3915)}, \underline{\chi_{c2}(3930)}, X(3940) \end{array}$
			ψ -like: $\psi(4230), \psi(4360), \psi(4660)$
			$\begin{array}{l} \text{ with } s\overline{s}; \ \underline{\chi_{c1}(4140)}, \ \underline{\chi_{c1}(4274)}, \\ \chi_{c1}(4685), \ \underline{\chi_{c1}(4500)}, \ \chi_{c1}(4700) \\ X(4150), \ X(4630), \ X(4740) \end{array}$
	-	I = 1	$\begin{array}{c} {\rm seen \ in \ } e^+e^- {\rm : \ } \frac{T_{c\bar{c}1}(3900)^{+/0}}{T_{c\bar{c}}(4020)^{+/0}}, \\ \\ \underline{T_{c\bar{c}}(4020)^{+/0}}, \ T_{c\bar{c}}(4055)^+ \end{array}$
		-	$ \begin{array}{l} \text{seen in B decays: $T_{cc}(4050)^+, $T_{cc}(4100)^+,$} \\ T_{cc1}(4200)^+, $T_{cc}(4240)^+, $T_{cc}(4250)^+, $T_{cc1}(4430)^+,$} \end{array} $
	-	$I = \frac{1}{2}$	$T_{ccs}(3985)^-, T_{ccs1}(4000)^{-/0}, T_{ccs1}(4220)^-$
	Hidden Bottom	I = 0	$\underline{\Upsilon(10753)}, \underline{\Upsilon(10860)}, \underline{\Upsilon(11020)}$
	-	I = 1	$T_{b\bar{b}1}(10610)^+, T_{b\bar{b}1}(10650)^+$
	Hidden Double Charm		$T_{c\bar{c}c\bar{c}}(6550), \underline{T_{c\bar{c}c\bar{c}}(6900)}, T_{c\bar{c}c\bar{c}}(7290)$
•	Open Single Charm		D_s^* -like: $\underline{D_{s0}^*(2317)^+}, \underline{D_{s1}(2460)^+}$
			$\begin{array}{c} T_{cs/c\bar{s}}\colon T_{cs0}(2900)^0,\\ T_{c\bar{s}0}(2900)^{0/++},\ T_{cs1}(2900)^0 \end{array}$
-	Open Double Charm		$T_{cc}(3875)^+$
Baryon-like (incl. pentaquarks)	Hidden Charm	$I = \frac{1}{2} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{array}{c} P_{cc}(4312)^+,P_{cc}(4440)^+,P_{cc}(4457)^+ \\ P_{cc}(4380)^+,P_{cc}(4337)^+ \end{array}$
	-	I = 0(1)	$P_{c\bar{c}s}(4458)^0, P_{c\bar{c}s}(4338)^0$

Cheng-Rong Deng (SWU)

crdeng@swu.edu.cn

July 11-15, 2025 5 / 23

1.4 Exotic hadron structure

Exotic natures

- valence quark number > 3
- Mass/width and/or production and/or decay properties inconsistent with predictions for conventional states

• Study of exotic hadrons can

- provide new insights into internal structure
- broaden our understanding of non-perturbative behaviour of QCD

• Theoretical descriptions

- Excited charmonium
- Compact multiquark states
- cc-gluon hybrid
- Hadron molecular states
- Threshold effect
-
- Still far away from a unified picture

The most popular one is hadron molecular states,

such as $X(3872)(D\bar{D}^*)$, $T_{cc}(3875)$ (DD^*) and P_c ($\Sigma\bar{D}^{(*)}$),.....

< □ > < □ > < □ > < □ > < □ > < □ >

1.5 Open double charm family

- The only member: $T_{cc}^+(3875)$, observed by LHCb in 2021.
 - Its binding energy and decay width are

 $E_b = -361 \pm 40$ keV, $\Gamma = 47.8 \pm 1.9$ keV.

May be a deuteronlike structure DD^* with 01^+ .

- Where are its family members?
- Theoretical explorations
 - In the early 1980s, the states $QQ\bar{q}\bar{q}$ were pioneered.
 - The existing studies.
 - · Mainly focus on di-mesons composed of two ground state mesons.
 - Di-mesons composed of excited state mesons are extremely scarce.
- We want to do
 - Searching for possible di-mesons D_1D_1 , $D_1D_2^*$ and $D_2^*D_2^*$
 - Discussing their forming mechanisms.

2.1 Model Hamiltonian

Model Hamiltonian

$$H_n = \sum_{i=1}^n \left(m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - T_c + \sum_{i>j}^n \left(V_{ij}^{oge} + V_{ij}^{con} + V_{ij}^{obe} + V_{ij}^{\sigma} \right)$$

• One-gluon-exchange and quark confinement

$$V_{ij}^{oge} = \frac{\alpha_s}{4} \lambda_i^c \cdot \lambda_j^c \left(\frac{1}{r_{ij}} - \frac{2\pi\delta(\mathbf{r}_{ij})\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j}{3m_i m_j} \right), \ V_{ij}^{con} = -a_c \lambda_i^c \cdot \lambda_j^c r_{ij}^2$$

• One Goldstone boson exchange

$$\begin{split} V_{ij}^{obe} &= V_{ij}^{\pi} \sum_{k=1}^{3} \mathbf{F}_{i}^{k} \mathbf{F}_{j}^{k} + V_{ij}^{K} \sum_{k=4}^{7} \mathbf{F}_{i}^{k} \mathbf{F}_{j}^{k} + V_{ij}^{\eta} (\mathbf{F}_{i}^{8} \mathbf{F}_{j}^{8} \cos \theta_{P} - \sin \theta_{P}) \\ V_{ij}^{\chi} &= \frac{g_{ch}^{2}}{4\pi} \frac{m_{\chi}^{3}}{12m_{i}m_{j}} \frac{\Lambda_{\chi}^{2}}{\Lambda_{\chi}^{2} - m_{\chi}^{2}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \left(Y(m_{\chi} r_{ij}) - \frac{\Lambda_{\chi}^{3}}{m_{\chi}^{3}} Y(\Lambda_{\chi} r_{ij}) \right), \ \chi = \pi, \ K, \ \eta \end{split}$$

• σ -meson exchange

$$V_{ij}^{\sigma} = -\frac{g_{ch}^2}{4\pi} \frac{\Lambda_{\sigma}^2 m_{\sigma}}{\Lambda_{\sigma}^2 - m_{\sigma}^2} \left(Y(m_{\sigma} r_{ij}) - \frac{\Lambda_{\sigma}}{m_{\sigma}} Y(\Lambda_{\sigma} r_{ij}) \right)$$

Cheng-Rong Deng (SWU)

2.2 Model parameters

• Solving Schrodinger equation and fitting spectrum with Minuit program

Parameters	Values Parameters		Values	Parameters	Values
ms	511.78±0.228	α_0	4.554±0.018	К	40.78±0.043
mc	$1601.7 {\pm} 0.441$	Λ_0	$9.173 {\pm} 0.175$	<i>r</i> 0	$35.06 {\pm} 0.156$
m _b	4936.2±0.451	μ_0	$0.0004 {\pm} 0.540$		

Table 1: Adjustable model parameters.

Table 2: Heavy-light meson spectra, mass unit in MeV and $\langle r^2 \rangle^{\frac{1}{2}}$ unit in fm.

State	IJP	Theory	PDG	$\langle \textbf{r}^2 \rangle^{\frac{1}{2}}$	State	IJP	Theory	PDG	$\langle \textbf{r}^2 \rangle^{\frac{1}{2}}$
D^+	$\frac{1}{2}0^{-}$	1867±8	1869.66 ± 0.05	0.68	D_1	$\frac{1}{2}1^+$	2361±4	2422.1 ± 0.6	1.16
D^*	$\frac{1}{2}1^{-}$	$2002{\pm}4$	2006.85 ± 0.05	0.82	D_2^*	$\frac{1}{2}2^+$	$2368{\pm}4$	2461.1 ± 0.8	1.17
D_3^*	$\frac{1}{2}3^{-}$	2677±4	2763.1 ± 3.2	1.45					

• Uncertainty of energy

$$\delta H = \sum_{i=1}^{8} \frac{\partial H(x_1, ..., x_8)}{\partial x_i} \delta x_i, \ \delta E = \langle \Phi_{IJ}^D | \delta H | \Phi_{IJ}^D \rangle$$

3.1 Two configurations of T_{cc}

Diquark configuration

Meson-meson configuration

- Diquark configuration: compact, color force.
- Meson-meson configuration: relative loose, residual interactions.

3.2 WF of charmed meson

• WF of charmed meson

$$\Phi_{IJ}^{D^{(*)}} = \chi_{c} \otimes \eta_{i} \otimes \psi_{s} \otimes \phi_{I_{r}m_{r}}(\mathbf{r})$$

Color part

$$\chi_c = \frac{1}{\sqrt{3}} (r\bar{r} + g\bar{g} + b\bar{b})$$

Isospin part

$$\eta_i = c \bar{u}, \ c \bar{d}$$

Spin part

$$S=0: \quad \psi_s=rac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow); \quad S=1: \quad \psi_s=\downarrow\downarrow, \quad rac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow), \quad \uparrow\uparrow$$

• Orbit part, Gaussian expansion method

$$\phi_{l_rm_r}(\mathbf{r}) = \sum_{n_r=1}^{n_{rmax}} c_{n_r} N_{n_r l_r} r^{l_r} e^{-\nu_{n_r} r^2} Y_{l_rm_r}(\hat{\mathbf{r}}), \quad \mathbf{r} = \mathbf{r}_c - \mathbf{r}_{\bar{q}}$$

メロト メロト メヨト メ

3.3 WF of di-meson state T_{cc}

• WF of di-meson state T_{cc} (D_1D_2)

$$\Psi_{IJ}^{T_{cc}} = \sum_{\xi} c_{\xi} \mathcal{A}_{12} \left\{ \left[\Phi_{l_1 J_1}^{D_1} \Phi_{l_2 J_2}^{D_2} \right]_{IJ} \phi_{l_{\rho} m_{\rho}}(\rho) \right\}.$$

• $\xi = \{I_1, I_2, J_1, J_2,\}$ and c_{ξ} can be determined by the model dynamics.

• A_{12} serves as an antisymmetrization operator

$$\mathcal{A}_{12} = P_{c_1c_2}P_{\bar{q}_1\bar{q}_2}, \quad P_{c_1c_2} = 1 - P_{c_1c_2}, \ P_{\bar{q}_1\bar{q}_2} = 1 - P_{\bar{q}_1\bar{q}_2}.$$

• $\phi_{l_{
ho}m_{
ho}}(
ho)$ represents the relative motion WF between two mesons

$$\rho = \frac{m_c \mathbf{r}_{c_1} + m_q \mathbf{r}_{\bar{q}_1}}{m_c + m_{\bar{q}}} - \frac{m_c \mathbf{r}_{c_2} + m_q \mathbf{r}_{\bar{q}_2}}{m_c + m_{\bar{q}}}$$

Also, $\phi_{l_{\rho}m_{\rho}}(\rho)$ is expressed by Gaussian expansion method.

イロン イロン イヨン イヨン

4.1 Methodology

• Solving the four-body Schrödinger equation

$$(H_4-E_4)\Psi_{IJ}^{T_{cc}}=0$$

• Binding energy

$$\Delta E_4 = E_4 - E_{D_1} - E_{D_2}$$

• Contribution from each interaction V^{χ} and kinetic energy

$$\begin{split} \Delta \langle V^{\chi} \rangle &= \langle \Psi_{IJ}^{T_{cc}} | V^{\chi} | \Psi_{IJ}^{T_{cc}} \rangle - \langle \Phi_{l_1 J_1}^{D_1} | V^{\chi} | \Phi_{l_1 J_1}^{D_1} \rangle - \langle \Phi_{l_2 J_2}^{D_2} | V^{\chi} | \Phi_{l_2 J_2}^{D_2} \rangle \\ \Delta \langle T \rangle &= \langle \Psi_{IJ}^{T_{cc}} | T | \Psi_{IJ}^{T_{cc}} \rangle - \langle \Phi_{l_1 J_1}^{D_1} | T | \Phi_{l_1 J_1}^{D_1} \rangle - \langle \Phi_{l_2 J_2}^{D_2} | T | \Phi_{l_2 J_2}^{D_2} \rangle \end{split}$$

• Average distance between D_1 and D_2

$$\langle \boldsymbol{
ho}^2
angle^{rac{1}{2}} = \langle \Psi_{IJ}^{T_{cc}} | \boldsymbol{
ho}^2 | \Psi_{IJ}^{T_{cc}}
angle^{rac{1}{2}}$$

4.2 $T_{cc}(3875)$ in the model

Table 3: Binding energy of S-wave $D^{(*)}D^{(*)}$, the contribution from various interactions and kinetic energy, unit in MeV. $\langle \mathbf{r}^2 \rangle^{\frac{1}{2}}$ is the size of mesons and $\langle \rho^2 \rangle^{\frac{1}{2}}$ is the distance between two mesons, unit in fm.

Constituent	IJР	ΔE_4	$\langle \textbf{r}^2\rangle^{\frac{1}{2}}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^\pi \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm conf} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
DD* D*D* Coupling	01 ⁺ 01 ⁺ 01 ⁺	Unbound Unbound 0.34 ± 0.08	0.75	4.32	-2.68	-2.19	0.17	-1.00	-3.16	-1.13	9.65

- Matching the experimental data well. Phys.Rev.D 105, 054015 (2022); Sci.Bull. 67, 1522 (2022)
 - Binding energy: 0.34 ± 0.08 MeV.
 - Deuteronlike state: $\langle {m
 ho}^2
 angle^{1\over 2} \simeq$ 4.32 fm.
 - Vital coupled channel effect: $DD^*(99.6\%) + D^*D^*(0.4\%)$.
 - Binding mechanisms: $V^{
 m cm} > V^{\sigma} > V^{\pi} > V^{
 m coul} > V^{
 m conf}$
- Other states are unstable.

(a)

Table 4: Binding energy of the S-wave D_1D_1 , the contribution from various interactions and kinetic energy, unit in MeV. *I*, *S* and *L* represent total isospin, spin, orbital angular momentum, respectively.

Constituent	$I, S \oplus L$	ΔE_4	$\langle r^2\rangle^{1\over 2}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^\pi \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm conf} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
$D_1 D_1$	$\begin{array}{c} 0, 0 \oplus 1 \\ 1, 0 \oplus 0 \\ 1, 0 \oplus 2 \end{array}$	Unbound -5.6 ± 0.1 Unbound	1.15	1.89	-2.8	-0.3	-0.1	-2.8	-2.0	3.3	-0.9

• Bound state: D_1D_1 with ISL = 100.

- Binding energy: -5.6 ± 0.1 MeV.
- Partly overlapped: $2\langle \mathbf{r}^2 \rangle^{rac{1}{2}} > \langle \boldsymbol{
 ho}^2 \rangle^{rac{1}{2}}$, hydrogenlike molecular state.
- Binding mechanisms: $V^{\sigma} = V^{\text{conf}} > V^{\text{cm}} > T > V^{\pi} > V^{\eta}$.
- Unbound states: D_1D_1 with ISL = 001 and 102.

イロト 不得下 イヨト イヨト

4.3 QCD valence bond

• QED valence bonds.

- Partly overlapped, shared electron
- QCD valence bonds.
 - Partly overlapped, light quark delocalization
 - Uncertainty principle, reduce kinetic energy

Image: A math a math

Table 5: Binding energy of the S-wave $D_1D_2^*$, see the caption for Table 4.

Constituent	$I, S \oplus L$	ΔE_4	$\langle \textbf{r}^2\rangle^{\frac{1}{2}}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^\pi \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm con} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
	$0, 1 \oplus 0$ $0, 1 \oplus 1$	Unbound									
$D_{1}D_{2}^{*}$	$0, 1 \oplus 1$ $0, 1 \oplus 2$	Unbound		4.00							
	$1, 1 \oplus 0$ $1, 1 \oplus 1$	-19.4 ± 0.2 Unbound	1.13	1.39	-3.8	-1.3	-0.3	-8.7	-1.7	8.2	-11.8
	$1,1\oplus2$	-3.6 ± 0.1	1.15	1.99	-3.0	-1.0	-0.2	-1.1	-1.4	9.3	-6.3

Note that we just consider spin-spin and orbit-orbit coupling.

- Bound states: $D_1D_2^*$ with ISL = 110 and 112.
 - Binding energy: -19.4 ± 0.2 MeV and -3.6 ± 0.1 MeV.
 - Partly overlapped: $2\langle \mathbf{r}^2 \rangle^{\frac{1}{2}} > \langle \boldsymbol{\rho}^2 \rangle^{\frac{1}{2}}$, hydrogenlike molecular state.
 - Mainly Binding mechanisms: QCD valence bonds.
- Unbound states: $D_1D_2^*$ with ISL = 010, 011, 012 and 111.

Table 6: Binding energy of the S-wave $D_2^* D_2^*$, see the caption for Table 4

Constituent	<i>I</i> , <i>S</i> ⊕ <i>L</i>	ΔE_4	$\langle r^2\rangle^{\frac{1}{2}}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^{\pi} \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm con} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
	$0,0\oplus1$	-1.1 ± 0.1	1.17	2.78	-1.8	-1.8	-0.0	-1.5	-2.1	0.3	5.8
$D_{2}^{*} D_{2}^{*}$	$0,1\oplus0$	Unbound									
2 2	$0,1\oplus2$	Unbound									
	$0,2\oplus1$	Unbound									

• Bound state: $D_2^* D_2^*$ with ISL = 001.

- Binding energy: -1.1 ± 0.1 MeV.
- Non-overlapped: $2\langle \mathbf{r}^2 \rangle^{\frac{1}{2}} > \langle \boldsymbol{\rho}^2 \rangle^{\frac{1}{2}}$, deuteronlike molecular state.
- Binding mechanisms: $V^{cm} > V^{\sigma} = V^{\pi} > V^{conf}$.
- Unbound states: $D_2^* D_2^*$ with ISL = 010, 012 and 021.

<ロ> (日) (日) (日) (日) (日)

Table 7: Binding energy of the S-wave $D_2^* D_2^*$, see the caption for Table 4

Constituent $I, S \oplus L \qquad \Delta E_4$	$\langle \textbf{r}^2 \rangle^{\frac{1}{2}}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^\pi \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm con} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
$1, 0 \oplus 0$ Unbound									
$1,0\oplus 2$ Unbound									
$D_2^* D_2^*$ 1,2 \oplus 0 -19.6 \pm 0.2	1.14	1.40	-3.8	-1.3	-0.3	-8.9	-1.9	8.2	-11.7
$1,1\oplus 1$ Unbound									
$1,2\oplus2\ -3.7\pm0.1$	1.16	1.96	-3.0	-1.0	-0.2	-1.2	-1.5	9.4	-6.3

• Bound states: $D_2^*D_2^*$ with ISL = 120 and 122.

- Binding energy: -19.6 ± 0.2 MeV and -3.7 ± 0.1 MeV.
- Partly overlapped: $2\langle \mathbf{r}^2 \rangle^{\frac{1}{2}} > \langle \boldsymbol{\rho}^2 \rangle^{\frac{1}{2}}$, hydrogenlike molecular state.
- Mainly Binding mechanisms: QCD valence bonds.
- Unbound states: D_1D_1 with ISL = 100, 102 and 111.

イロト イヨト イヨト イ

4.6 Channel coupled effects

Table 8: Channel coupled effects for the bound states.

Constituent	$I, S \oplus L$	Ratio	ΔE_4	$\langle \textbf{r}^2\rangle^{\frac{1}{2}}$	$\langle \rho^2 \rangle^{1\over 2}$	$\Delta \langle V^\sigma \rangle$	$\Delta \langle V^\pi \rangle$	$\Delta \langle V^\eta \rangle$	$\Delta \langle V^{\rm con} \rangle$	$\Delta \langle V^{\rm cm} \rangle$	$\Delta \langle V^{\rm coul} \rangle$	$\Delta \langle T \rangle$
$D_1 D_1 \\ D_2^* D_2^*$	$0,0\oplus1$	55% 45%	-3.0 ± 0.1	1.15	1.73	-2.7	-5.2	0.1	0.1	2.8	5.7	-3.8
${}^{D_1D_2^*}_{D_2^*D_2^*}$	$0,1\oplus0$	56% 44%	-18.6 ± 0.3	1.13	1.34	-4.1	-12.5	0.9	-8.5	8.7	9.6	-12.7
${}^{D_1D_2^*}_{D_2^*D_2^*}$	$0,1\oplus 2$	71% 29%	-2.4 ± 0.2	1.15	2.02	-3.0	-8.8	0.6	-0.8	6.3	10.0	-6.7
$D_1 D_1 D_1 D_2^* D_2^*$	$1,0\oplus0$	85% 15%	-16.4 ± 0.2	1.13	1.41	-3.8	-1.3	-0.3	-6.2	0.8	9.2	-14.9
$D_1 D_1 D_1 D_2^* D_2^*$	$1,0\oplus2$	95% 5%	-1.8 ± 0.1	1.15	2.25	-2.5	-0.7	-0.2	-0.0	-0.3	7.6	-5.7
$D_{1}D_{2}^{*}$	$1,1\oplus0$	100%	-19.4 ± 0.2	1.13	1.39	-3.8	-1.3	-0.3	-8.7	-1.7	8.2	-11.8
$D_1 D_2^*$	$1,1\oplus2$	100%	-3.6 ± 0.1	1.15	1.99	-3.0	-1.0	-0.2	-1.1	-1.4	9.3	-6.3
$D_{2}^{*} D_{2}^{*}$	$1,2\oplus0$	100%	-19.6 ± 0.2	1.14	1.40	-3.8	-1.3	-0.3	-8.9	-1.9	8.2	-11.7
$D_{2}^{*}D_{2}^{*}$	$1,2\oplus2$	100%	-3.7 ± 0.1	1.16	1.96	-3.0	-1.0	-0.2	-1.2	-1.5	9.4	-6.3

- Those bound states are hydrogenlike molecular states.
- In the states with I = 0, the meson exchanges are vital.
- In the states with I = 1, QCD valence bonds are paramount

Cheng-Rong Deng (SWU)

Isospin-spin-orbit (ISL)

イロト イヨト イヨト イヨト

Summary

- QCD valence bonds, orbit partly overlapped, light quark delocalization.
- Nine stable hydrogenlike molecules composed of D_1D_1 , $D_1D_2^*$ and $D_2^*D_2^*$.
- In the states with I = 0, the meson exchanges are vital.
- In the states with I = 1, QCD valence bonds are paramount.

Image: A math a math

Thank you for your attention!

A D > A B > A B >