

The hadronic weak decay of charmed baryons

华南师范大学·量子物质研究院

牛鹏宇

第八届强子谱和强子结构研讨会 广西·桂林

2025.07.14

01 Introduction

02 Frame Work: non-relativistic constituent quark model

I. Wave Functions of Hadrons II. The Effective Hamiltonian

03 The hadronic weak decay of charmed baryons

I. The hadronic weak decay of Λ_c II. The hadronic weak decay of Ξ_c

1. Introduction Charmed baryons

• Decay:
$$B_c \rightarrow B M$$

- Decay mechanism
- > Spectrum
- Structure
- > CPV

▶...

1. Introduction Motivation

- Weak interactionStrong interaction
- > Non-factorizable transition mechanisms:
 - Color suppressed contribution
 - Pole term contribution
- > The property of light diquark

 $\mathbf{A}_{c} / \Xi_{c} \rightarrow B M$

1. Introduction Diquark

- **#** Diquark: strong color correlation between quarks S-wave color $\overline{3}$ diquarks: S(0+) and A(1+) color $3 \otimes 3 = \overline{3} \oplus 6$ spin : $\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$
- **#** Spin dependent force from magnetic gluon exchange predicts strong attraction in S(0⁺). Color-Magnetic Interaction $\Delta_{CM} \equiv \langle -\sum_{i < j} (\vec{\lambda}_i \cdot \vec{\lambda}_j) (\vec{\sigma}_i \cdot \vec{\sigma}_j) \rangle$

 $\rightarrow \underline{Charmed \ baryon}_{u} (\Lambda_c[udc])$ $m_u, m_d \iff m_c \rightarrow \underline{diquark + quark}_{(qq)} (Q)$

S(0⁺) color $\bar{3}$ $\Delta_{CM} = -8$ aka good diquark A(1⁺) color $\bar{3}$ $\Delta_{CM} = + 8/3$ aka bad diquark

M(A)-M(S) = (2/3) [M(Δ)- M(N)] ~ 200 MeV consistent with the splitting of $\Lambda_c - \Sigma_c$ $M_{\Sigma} - M_{\Lambda} = 80 \text{ MeV}$ G MM-(

 $\overline{3}$

three-quark system or with compact diquark degrees of freedom ?

Makoto Oka (RIKEN Nishina Center and ASRC, JAEA) 🛛 🦛

1. Introduction

► BES III:

Phys. Rev. D 111.012014 (2025)
Phys. Rev. Lett 134.021901(2025)
Phys. Rev. D 111. L051101(2024)
Phys. Rev. Lett 132.031801(2024)
Phys. Rev. Lett 128.142001(2022)
...

Belle II and Belle:

- •arXiv: 2503.17643v1
- •Phys. Rev. D 110.032021(2025)
- •JHEP 03. 061(2025)
- •JHEP 10. 045 (2024)
- Phys. Rev. D 107.032008(2023)

> LHCb:

• . . .

•...

- Phys. Rev. Lett 132.081802(2024)
- Eur. Phys. J. C 84.237 (2024)
- •Eur. Phys. J. C 84.575 (2024)
- Phys. Rev. Lett 133.261804(2024)Phys. Rev. D 108.072002(2023)

Spectrum, Structure and Decay

- Ying Zhang, Qing-Fu Song, Qi-Fang Lü, et al. arXiv: 2507.06611
- Mikhail Shifman, Nucl.Part.Phys.Proc. 347 (2024) 86-89
- Frank Wilczek, arXiv: hep-ph/0409168v2
- ▶ ...

▶ ...

- ➢ Di Wang, arXiv: 2507: 06914
- Hai-Yang Cheng, Fanrong Xu, Huiling Zhong, arXiv: 2505.07150
- Hai-Yang Cheng, Fanrong Xu, Huiling Zhong, Phys. Rev. D 109.114027
- > C. P. Jia, D. Wang, and F. S. Yu, Nucl. Phys. B 56, 115048.
- → H. Liu and C. Yang, Phys. Rev. D 108, 093011.
- Xiao-Gang He, Yu-Ji Shi1, Wei Wang, Eur. Phys. J. C (2020) 80:359
- Wei Wang , Zhi-Peng Xing , Zhen-Xing Zhao, Phys. Rev. D 111, 053006.

Frame Work

> The wave functions of hadrons

➤ The effective Hamiltonian

Nonrelativistic constituent quark model

Color	SU(3)	$3\otimes 3\otimes 3 \ = 10_s + 8_ ho + 8_\lambda + 1_a$
Spin	SU(2)	$2\otimes 2\otimes 2 \ = 4_s+2_ ho+2_\lambda,$
Flavor	SU(3)	$3\otimes 3\otimes 3 \ = 10_s + 8_ ho + 8_\lambda + 1_a,$
Spin-flavor	SU(6)	$6\otimes 6\otimes 6 = 56_s+70_ ho+70_\lambda+20_a,$
Spatial	O(3)	L^P s, $ ho$, λ , a

ISGUR N, KARL G. Phys.Rev.D, 1978, 18:4187 F. Hussain and M. Scadron, Nuovo Cim. A **79**, 248 (1984) LE YAOUANC A, OLIVER L, PENE O, et al. HADRON TRANSITIONS IN THE QUARK MODEL[M]. 1988.

2. Frame Work 2.1 Wave function of light baryons

The Hamiltonian of three quark system

$$H = \sum_{i} \left(m_i + \frac{p_i^2}{2m_i} \right) + \sum_{i < j} V_{conf}^{ij} + H_{hyp}^{ij},$$

where

$$V_{conf}^{ij} = C_{qqq} + \frac{1}{2}b r_{ij} - \frac{2}{3}\frac{\alpha_s}{r_{ij}} = \frac{1}{2}\beta r_{ij}^2 + U_{ij},$$

$$H_{hyp}^{ij} = \sum_{i < j} \frac{2\alpha_s(\boldsymbol{r}_{ij})}{3m_i m_j} \left[\frac{8\pi}{3} \boldsymbol{S}_i \cdot \boldsymbol{S}_j \delta^3(\boldsymbol{r}_{ij}) + \frac{1}{r_{ij}^3} \left(\frac{3\boldsymbol{S}_i \cdot \boldsymbol{r}_{ij} \, \boldsymbol{S}_j \cdot \boldsymbol{r}_{ij}}{r_{ij}^2} - \boldsymbol{S}_i \cdot \boldsymbol{S}_i \right) \right].$$

Harmonic oscillator potential: $H = \sum_{i} \left(m_i + \frac{p_i^2}{2m_i} \right) + \frac{1}{2} K \sum_{i < j} \left(r_i - r_j \right)^2$

2. Frame Work 2.1 The wave functions of hadrons

Jacobi coordinates:

$$R = \frac{m(r_1 + r_2) + m'r_3}{M}, \qquad P = p_1 + p_2 + p_3,$$
$$\rho = \frac{1}{\sqrt{2}}(r_1 - r_2), \qquad p_\rho = \frac{1}{\sqrt{2}}(p_1 - p_2),$$
$$\lambda = \frac{1}{\sqrt{6}}(r_1 + r_2 - 2r_3), \qquad p_\lambda = \frac{1}{\sqrt{6}M}(3m'p_1 + 3m'p_2 - 6mp_3),$$
$$\Rightarrow$$

$$H = \frac{\mathbf{P}^2}{2M^2} + \frac{\mathbf{p}_{\lambda}^2}{2m_{\lambda}^2} + \frac{\mathbf{p}_{\rho}^2}{2m_{\rho}^2} + \frac{1}{2}m_{\rho}\omega_{\rho}^2\mathbf{\rho}^2 + \frac{1}{2}m_{\lambda}\omega_{\lambda}^2\boldsymbol{\lambda}^2,$$

The total wave function of the momentum space

$$\Psi_{NLM}(\boldsymbol{p}, \boldsymbol{p}_{\rho}, \boldsymbol{p}_{\lambda}) = \delta^{3}(\boldsymbol{P} - \boldsymbol{P}') \left[\psi_{n_{\rho}l_{\rho}m_{\rho}}(\boldsymbol{p}_{\rho}, \alpha_{\rho}) \psi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\boldsymbol{p}_{\lambda}, \alpha_{\lambda}) \right]_{l_{\rho}, l_{\lambda;L}},$$
$$\psi_{nlm}(\boldsymbol{p}, \alpha) = i^{l}(-1)^{n} \left[\frac{2n!}{\left(n+l+\frac{1}{2}\right)!} \right]^{\frac{1}{2}} \frac{1}{\alpha^{l+\frac{3}{2}}} e^{-\frac{\boldsymbol{p}^{2}}{2\alpha^{2}}} L_{n}^{l+\frac{1}{2}} \left(\frac{\boldsymbol{p}^{2}}{\alpha^{2}} \right) \mathcal{Y}_{lm}(\boldsymbol{p}).$$

$$\langle \boldsymbol{\rho}^2 / \boldsymbol{\lambda}^2 \rangle = \frac{3}{2} \frac{1}{\alpha_{\rho/\lambda}^2}$$
$$\langle \boldsymbol{r}_{qc}^2 \rangle = \frac{3}{2} \langle \boldsymbol{\lambda}^2 \rangle + \frac{1}{2} \langle \boldsymbol{\rho}^2 \rangle$$

where

2. Frame Work 2.1 Wave function of light baryons

Color	SU(3)	$3\otimes 3\otimes 3 = 10_s + 8_ ho + 8_\lambda + 1_a$
Spin	SU(2)	$2\otimes 2\otimes 2 \ = 4_s+2_ ho+2_\lambda,$
Flavor	SU(3)	$3\otimes 3\otimes 3 = 10_s+8_ ho+8_\lambda+1_a,$
Spin-flavor	SU(6)	$6\otimes 6\otimes 6 ~~= 56_s+70_ ho+70_\lambda+20_a,$
Spatial	O(3)	L^P s, ρ , λ , a

$$\phi_c |\mathrm{SU}(6) \otimes \mathrm{O}(3)\rangle = \phi_c | N_6, \, {}^{2S+1}N_3, \mathrm{N}, \mathrm{L}, \mathrm{J}\rangle$$

Light baryons
$$\left| 56, {}^{2}8, 0, 0, \frac{1}{2} \right\rangle$$
:

$$\frac{1}{\sqrt{2}} (\phi^{\rho} \chi^{\rho} + \phi^{\lambda} \chi^{\lambda}) \Psi_{000}(\boldsymbol{p}_{\rho}, \boldsymbol{p}_{\lambda})$$

Baryon wave function as representation of 3-dimension permutation group.

2. Frame Work 2.1 Wave function of light baryons

$$3 \otimes 3 = \overline{3} \bigoplus 6 \quad \phi_{3}^{c} = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)c & \text{for } \Lambda_{c}^{c}, \\ \frac{1}{\sqrt{2}}(us - su)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ds - sd)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ds - sd)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ds - sd)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ud + du)c & \text{for } \Sigma_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ud + du)c & \text{for } \Sigma_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ud + du)c & \text{for } \Sigma_{c}^{c}, \\ \frac{1}{\sqrt{2}}(us + su)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(us + su)c & \text{for } \Xi_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ds + sd)c & \text{for } \Sigma_{c}^{c}, \\ \frac{1}{\sqrt{2}}(ds + sd)c & \text{for }$$

L.A Copley, Isgur N, Karl G. Phys.Rev.D, 20, 758(1978) Xian-Hui Zhong and Qiang Zhao, PHYSICAL REVIEW D **77**, 074008 (2008)

2. Frame Work 2.2 Operators

Weak interactionStrong interaction

 $\Lambda_c \to \Lambda \pi$

2. Frame Work 2.2 Operators: weak interaction

2. Frame Work 2.2 Operators: weak interaction

$$H_{W,1\to3} = \frac{G_F}{\sqrt{2}} V_{ud} V_{cs} \frac{\beta}{(2\pi)^3} \delta^3(\boldsymbol{p}_3 - \boldsymbol{p}_3' - \boldsymbol{p}_5 - \boldsymbol{p}_4) \bar{u}(\boldsymbol{p}_3', m_3') \gamma_\mu (1 - \gamma_5) u(\boldsymbol{p}_3, m_3) \bar{u}(\boldsymbol{p}_5, m_5) \gamma^\mu (1 - \gamma_5) v(\boldsymbol{p}_4, m_4)$$

$$\begin{split} H^{PC}_{W,1\to3} &= \frac{G_F}{\sqrt{2}} V_{ud} V_{cs} \frac{\beta}{(2\pi)^3} \delta^3(\mathbf{p}_3 - \mathbf{p}_3' - \mathbf{p}_4 - \mathbf{p}_5) \left\{ \langle s_3' | I | s_3 \rangle \, \langle s_5 \bar{s}_4 | \boldsymbol{\sigma} | 0 \rangle \left(\frac{\mathbf{p}_5}{2m_5} + \frac{\mathbf{p}_4}{2m_4} \right) \right. \\ &\left. - \left[\left(\frac{\mathbf{p}_3'}{2m_3'} + \frac{\mathbf{p}_3}{2m_3} \right) \langle s_3' | I | s_3 \rangle - i \, \langle s_3' | \boldsymbol{\sigma} | s_3 \rangle \times \left(\frac{\mathbf{p}_3}{2m_3} - \frac{\mathbf{p}_3'}{2m_3'} \right) \right] \langle s_5 \bar{s}_4 | \boldsymbol{\sigma} | 0 \rangle \\ &\left. - \langle s_3' | \boldsymbol{\sigma} | s_3 \rangle \left[\left(\frac{\mathbf{p}_5}{2m_5} + \frac{\mathbf{p}_4}{2m_4} \right) \langle s_5 \bar{s}_4 | I | 0 \rangle - i \, \langle s_5 \bar{s}_4 | \boldsymbol{\sigma} | 0 \rangle \times \left(\frac{\mathbf{p}_4}{2m_4} - \frac{\mathbf{p}_5}{2m_5} \right) \right] \right. \\ &\left. + \langle s_3' | \boldsymbol{\sigma} | s_3 \rangle \left(\frac{\mathbf{p}_3'}{2m_3'} + \frac{\mathbf{p}_3}{2m_3} \right) \langle s_5 \bar{s}_4 | I | 0 \rangle \right\} \hat{\alpha}_3^{(-)} \hat{I}_{\pi}', \\ H^{PV}_{W,1\to3} &= \frac{G_F}{\sqrt{2}} V_{ud} V_{cs} \frac{\beta}{(2\pi)^3} \delta^3(\mathbf{p}_3 - \mathbf{p}_3' - \mathbf{p}_4 - \mathbf{p}_5) \left(- \langle s_3' | I | s_3 \rangle \, \langle s_5 \bar{s}_4 | I | 0 \rangle + \langle s_3' | \boldsymbol{\sigma} | s_3 \rangle \, \langle s_5 \bar{s}_4 | \boldsymbol{\sigma} | 0 \rangle \right) \hat{\alpha}_3^{(-)} \hat{I}_{\pi}', \end{split}$$

2. Frame Work 2.2 Operators: chiral quark model

$$u \longrightarrow \int_{c} \frac{d}{d} = \sum_{j} \int dx \frac{1}{f_m} \bar{q}_j(x) \gamma_{\mu}^j \gamma_5^j q_j(x) \partial^{\mu} \phi_m(x)$$

In the non-relativistic limit:

$$H_{\rm m} = \frac{1}{\sqrt{(2\pi)^3 2\omega_m}} \sum_j \frac{1}{f_m} \left[\omega_m \left(\frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}_f^j}{2m_f} + \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}_i^j}{2m_i} \right) - \boldsymbol{\sigma} \cdot \boldsymbol{k} \right] \hat{l}_m^j \delta^3 \left(\boldsymbol{p}_f^j + \boldsymbol{k} - \boldsymbol{p}_i^j \right)$$

The isospin operator
$$\hat{I}_m^j$$
 is written as $\hat{I}_{\pi}^j = \begin{cases} b_u^{\dagger} b_d & \text{for } \pi^- \\ b_d^{\dagger} b_u & \text{for } \pi^+ \\ \frac{1}{\sqrt{2}} \left[b_u^{\dagger} b_d - b_d^{\dagger} b_u \right] & \text{for } \pi^0 \end{cases}$

2. Frame Work 2.3 Amplitudes and parity asymmetry parameter

Normalization:

$$\langle M(\mathbf{P}_{c}')_{J,J_{z}} | M(\mathbf{P}_{c}')_{J,J_{z}} \rangle = \delta^{3}(\mathbf{P}_{c}' - \mathbf{P}_{c}),$$

$$\langle B(\mathbf{P}_{c}')_{J,J_{z}} | B(\mathbf{P}_{c}')_{J,J_{z}} \rangle = \delta^{3}(\mathbf{P}_{c}' - \mathbf{P}_{c}).$$

Decay width:

$$\Gamma(A \to B + C) = 8\pi^2 \frac{|\mathbf{k}|E_B E_C}{M_A} \frac{1}{2J_A + 1} \sum_{spin} |M|^2,$$

where

 $\delta^{3}(\boldsymbol{P}_{A}-\boldsymbol{P}_{B}-\boldsymbol{P}_{C})M\equiv\langle BC|H|A\rangle.$

The parity asymmetry parameter $M = G_F m_{\pi}^2 \overline{B}_f (A - B\gamma_5) B_i$

The transition rate is proportional to $R = 1 + \gamma \,\widehat{\omega}_f \cdot \widehat{\omega}_i + (1 - \gamma)(\widehat{\omega}_f \cdot \widehat{\mathbf{n}})(\widehat{\omega}_i \cdot \widehat{\mathbf{n}}) + \alpha(\widehat{\omega}_f \cdot \widehat{\mathbf{n}} + \widehat{\omega}_i \cdot \widehat{\mathbf{n}}) + \beta \,\widehat{\mathbf{n}} \cdot (\widehat{\omega}_f \times \widehat{\omega}_i) ,$

$$\alpha = \frac{2\operatorname{Re}(s^*p)}{|s^2| + |p^2|} \qquad p = B \frac{|p_f|}{E_f + m_f}$$

$$\alpha = \frac{2\operatorname{Re}(M_{\rm PV}^*M_{\rm PC})}{|M_{\rm PC}^2| + |M_{\rm PV}^2|}$$

18

The hadronic weak decay of charmed baryons

The hadronic weak decay of \$\Lambda_c\$
The hadronic weak decay of \$\mathbb{E}_c\$

03

3. $\Lambda_c \rightarrow \Lambda/\Sigma \pi$ 3.1 Previous works: hadronic weak decays of Λ_c

Processes	$\Lambda_c \to \Lambda \pi^+$	$\Lambda_c \to \Sigma^+ \pi^0$	$\Lambda_c \to \Sigma^0 \pi^+$	\overline{d}
DME	\checkmark	×	×	u u
CS	\checkmark	\checkmark	\checkmark	
Pole term	\checkmark	\checkmark	\checkmark	
Br	1.30%	1.29%	1.24%	$d \longrightarrow $

$$\phi_{\Lambda_c} = \frac{1}{\sqrt{2}} (ud - du)c, \ \phi_{\Lambda} = \frac{1}{\sqrt{2}} (ud - du)s, \ \phi_{\Sigma^0} = \frac{1}{\sqrt{2}} (ud + du)s$$

DPE process should not be the only dominant processes.
The important of non-factorizable processes

Peng-Yu Niu, Jean-Marc Richard, Qian Wang, and Qiang Zhao, Phys. Rev. D.102.073005

3. $\Lambda_c \rightarrow \Lambda/\Sigma\pi$ 3.1 Previous works: hadronic weak decays of Λ_c

TABLE V: The amplitudes with $J_f^z = J_i^z = -1/2$ for different processes and the unit is 10^{-9} GeV^{-1/2}. Amplitudes A1(PV) and A2(PV) are given by the parity-violating intermediate states $\Sigma^{*+}(1620)$ ([70, ²8]) and $\Sigma^{*+}(1750)$ ([70, ⁴8]), respectively.

Processes	A(PC)	A1(PV)	A2(PV)	B(PC)	B(PV)	CS(PC)	CS(PV)	DPE(PC)	DPE(PV)
$\Lambda_c \to \Lambda \pi^+$	-16.50	0.74 - 0.023i	-2.57+0.10i	22.33 + 0.021i	-10.72 - 0.33i	3.50	-4.17	-42.47	24.07
$\Lambda_c \to \Sigma^0 \pi^+$	19.67	-3.21+0.10i	-2.23 + 0.090i	-40.73 - 0.040i	19.16+0.60i	-6.04	7.53	0	0
$\Lambda_c \to \Sigma^+ \pi^0$	19.64	-3.15 + 0.098i	-2.19 ± 0.088	-40.65 - 0.10i	$19.28 \pm 0.52i$	-6.04	7.51	0	0

> The parity-conserving amplitudes of the pole terms are dominant.

	${\rm BR}(\Lambda_c\to\Lambda\pi^+)$	${\rm BR}(\Lambda_c\to\Sigma^0\pi^+)$	${\rm BR}(\Lambda_c\to \Sigma^+\pi^0)$
PDG data [24]	1.30 ± 0.07	1.29 ± 0.07	1.24 ± 0.10
BESIII [20]	$1.24 \pm 0.07 \pm 0.03$	$1.27 \pm 0.08 \pm 0.03$	$1.18 \pm 0.10 \pm 0.03$
SU(3) [39]	1.3 ± 0.2	1.3 ± 0.2	1.3 ± 0.2
Pole model [4]	1.30 ± 0.07	1.29 ± 0.07	1.24 ± 0.10
Current algebra [4]	1.30 ± 0.07	1.29 ± 0.07	1.24 ± 0.10
This work	1.30	1.24	1.26
		•	
(1.31	+0.08+0.05)% (2)	$1.22 \pm 0.08 \pm 0.07)\%$	BESIII PRL.128.142001(2

> The interferences between factorizable and non-factorizable processes are essential.

21

3. $\Lambda_c \rightarrow \Lambda/\Sigma\pi$ 3.1 Previous works: hadronic weak decays of Λ_c

$$\Lambda_c \to \Lambda / \Sigma K^+$$

The constituent quarks of the final baryons are the same but with different isospins carried by the light quarks.

- p, Ξ_c^0 , and $\Xi_c'^0$ for the PC processes,
- $N(1535), N(1650), |\Xi_c^0, {}^2P_\lambda\rangle, |\Xi_c^0, {}^2P_\rho\rangle, |\Xi_c^0, {}^4P_\rho\rangle, |\Xi_c^{\prime 0}, {}^2P_\lambda\rangle, |\Xi_c^{\prime 0}, {}^2P_\rho\rangle, \text{ and } |\Xi_c^{\prime 0}, {}^4P_\lambda\rangle \text{ for the PV processes.}$

Pengyu Niu, Qian wang and Qiang Zhao arXiv: 2507.04393

$$|\Lambda_c\rangle = |0,0\rangle$$

$$\langle\Lambda| = \langle 0,0|$$

$$\langle\Sigma^0| = \langle 1,0|$$
II
CS

The weak Hamiltonian

$$cs \rightarrow su, cd \rightarrow du \text{ and } c \rightarrow s \overline{u} s:$$

 $\Delta I = \frac{1}{2}, \Delta I_3 = \frac{1}{2} \Rightarrow |H_W\rangle = \left|\frac{1}{2}, \frac{1}{2}\right|$

$$R_{\Gamma} \approx \frac{|M(\Lambda_c \to \Lambda K^+)|^2}{|M(\Lambda_c \to \Sigma^0 K^+)|^2} = \frac{|\langle \Lambda K^+ | H_W | \Lambda_c \rangle|^2}{|\langle \Sigma^0 K^+ | H_W | \Lambda_c \rangle|^2} = \frac{|\langle 0, 0; \frac{1}{2}, \frac{1}{2} | 0, 0; \frac{1}{2}, \frac{1}{2} \rangle|^2}{|\langle 1, 0; \frac{1}{2}, \frac{1}{2} | 0, 0; \frac{1}{2}, \frac{1}{2} \rangle|^2} = 3.$$

Only the α_{ρ} of anti-triplet charmed baryon are changed.

The α_{ρ} and α_{λ} of are treated as free parameters

Neither the [ud] quark pair nor the heavy-light diquark in the single charmed baryons is point-like structure.

Danitur	Drogozzaz	States	$\Lambda_c \to \Lambda \ K^+$		$\Lambda_c \to \Sigma^0 K^+$		
Farity	Processes	States -	$\theta = 0^{\circ}$	$\theta = 30^{\circ}$	$\theta = 0^{\circ}$	$\theta = 30^{\circ}$	
	DPE	-	-6.71	-6.29	0	0	The mixing angle
	\mathbf{CS}	-	0.67	0.63	-1.16	-1.08	The mixing angle
\mathbf{PC}	WS	p	-1.89	-2.30	0.36	0.44	of $N(1535)$ and
	\mathbf{SW}	Ξ_c^0	(0,0)	(0, 0)	(0, 0)	(0, 0)	
		$\Xi_c^{\prime 0}$	(0.60, 1.13)	1.33	(-1.14, 0)	(-2.45, 0)	N(1650) is 30.
	Total	-	-6.21	-4.11	-1.94	-3.10	
	DPE	-	4.93	4.48	0	0	
	\mathbf{CS}	-	-1.10	-1.08	1.97	1.91	
\mathbf{PV}	WS	N(1535)	2.67-0.15i	3.23 - 0.18i	0.58 - 0.32i	-0.65 + 0.084i	
ĨV		N(1650)	0	0.87 - 0.048i	4.37 - 0.40i	5.24 - 0.47i	
	\mathbf{SW}	$\Xi_c^0 ^2 P_{ ho}\rangle$	(-0.36, 0.82)	(-0.99, 2.20)	(0.89, 0.096)	(2.28, 0.20)	Selection Rules
		$\Xi_c^0 ^2 P_\lambda \rangle$	(0,0)	(0, 0)	(0, 0)	(0, 0)	Sciection Rules
		$\Xi_c^0 ^4 P_{ ho}$	(0.55, -1.05)	(1.45, -2.75)	(-1.05, 0)	(-2.67, 0)	
		$\Xi_c^{\prime 0} ^2 P_{ ho} \rangle$	(0,0)	(0, 0)	(0, 0)	(0, 0)	
		$\Xi_c^{\prime 0} ^2 P_\lambda \rangle$	(-0.45, -0.80)	(-1.19, -2.11)	(0.78, 0.043)	(2.03, 0.091)	
		$\Xi_c^{\prime 0} ^4 P_\lambda \rangle$	(0.56, 1.06)	(1.45, 2.75)	(-1.05, 0)	(-2.66, 0)	
	Total	-	6.68 - 0.15i	8.32 - 0.23i	6.63 - 0.43i	5.77 - 0.39i	

27

$$N(1535): [70,^2 8]$$

 $N(1650): [70,^4 8]$

The spin of u and d must be persevered.

$$\begin{split} |\mathbf{56},^{2}8,0,0,\frac{1}{2}\rangle &= \frac{1}{\sqrt{2}}(\phi_{B}^{\rho}\chi_{S,S_{z}}^{\rho} + \phi_{B}^{\lambda}\chi_{S,S_{z}}^{\lambda})\Psi_{0,0,0}, \\ |\mathbf{70},^{2}8,1,1,J\rangle &= \sum_{L_{z}+S_{z}=J_{z}}\langle 1,L_{z};\frac{1}{2},S_{z}|JJ_{z}\rangle\frac{1}{2}\left[(\phi_{B}^{\rho}\chi_{S,S_{z}}^{\lambda} + \phi_{B}^{\lambda}\chi_{S,S_{z}}^{\rho})\Psi_{1,1,L_{z}}^{\rho} + (\phi_{B}^{\rho}\chi_{S,S_{z}}^{\rho} - \phi_{B}^{\lambda}\chi_{S,S_{z}}^{\lambda})\Psi_{1,1,L_{z}}^{\lambda}\right], \\ |\mathbf{70},^{4}8,1,1,J\rangle &= \sum_{L_{z}+S_{z}=J_{z}}\langle 1,L_{z};\frac{3}{2},S_{z}|JJ_{z}\rangle\frac{1}{\sqrt{2}}\left[\phi_{B}^{\rho}\chi_{S,S_{z}}^{s}\Psi_{1,1,L_{z}}^{\rho} + \phi_{B}^{\lambda}\chi_{S,S_{z}}^{s}\Psi_{1,1,L_{z}}^{\lambda}\right]. \end{split}$$

Λ selection rule: leads to the vanishing transition matrix element between N(1650) of $[70,^4 8]$ and $[56,^2 8]$ in $N(1650) → Λ K/K^*$.

Qiang Zhao and Frank E. Close, arXiv:0711.0151v1

Evidence for the strangeness-changing weak decay
$$\Xi_b^- \to \Lambda_b^0 \pi^-$$
 #1
LHCb Collaboration • Roel Aaij (CERN) et al. (Oct 13, 2015)
Published in: *Phys.Rev.Lett.* 115 (2015) 24, 241801 • e-Print: 1510.03829 [hep-ex]
 $\textcircled{P} pdf \quad O \quad Inks \quad O \quad D \quad \boxdot \ cite \qquad \textcircled{O} \ 21 \ citations$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b}} \mathcal{B}(\Xi_b^- \to \Lambda_b \pi^-) = (5.7 \pm 1.8^{+0.8}_{-0.9}) \times 10^{-4}$$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b}} \approx 0.1 \sim 0.3 \Rightarrow \mathcal{B}(\Xi_b^- \to \Lambda_b \pi^-) = (0.57 \pm 0.21)\% \sim (0.19 \pm 0.07)\%$$
First branching fraction measurement of the suppressed decay $\Xi_c^0 \to \pi^- \Lambda_c^+$ #1
LHCb Collaboration • Roel Aaij (NIKHEF, Amsterdam) et al. (Jul 23, 2020)
Published in: *Phys.Rev.D* 102 (2020) 7, 071101 • e-Print: 2007.12096 [hep-ex]
 $\textcircled{P} \ pdf \ O \ Dol \ \sqsubseteq \ cite \qquad \textcircled{O} \ 0 \ citations$

$$\mathcal{B}(\Xi_c^0 \to \Lambda_c \pi^-) = (0.55 \pm 0.02 \pm 0.18)\%$$

Peng-Yu Niu, Qian Wang, and Qiang Zhao, Phys. Lett. B 826(2022)136916

3. $\Xi_Q
ightarrow \Lambda_Q \pi$

#1

3. $\Xi_Q \rightarrow \Lambda_Q \pi$

Processes	$\Xi_c^+ \to \Lambda_c \pi^0$	$\Xi_c^0 \to \Lambda_c \pi^-$	$\Xi_b^0 o \Lambda_b \pi^0$	$\Xi_b^- o \Lambda_b \pi^-$
Exp. Data		0.55 ± 0.20 [1]		$0.19 \pm 0.07 \sim 0.57 \pm 0.21$ [2]
MIT bag model [4]	0.0093	0.0087	0.059	0.2
Diquark model [4]			0.25	0.69
Duality [5]				0.63 ± 0.42
Current algebra [11]	0.386 ± 0.135	0.194 ± 0.07		
Current algebra [6]			$1 \sim 4$	$2\sim 8$
Current algebra [10]	< 0.6	< 0.3	0.09 - 0.37	0.19 - 0.76
Our results	1.11	0.58	0.017	0.14

Larger than the theoretical values

3. $\Xi_Q
ightarrow \Lambda_Q \pi$

3. $\Xi_Q
ightarrow \Lambda_Q \pi$

		Ξζ	$_{c}^{+} \rightarrow \Lambda_{c} \pi^{0}$	Ξ	$_{c}^{0} \rightarrow \Lambda_{c} \pi^{-}$	Ξ	$h_b^0 \to \Lambda_b \pi^0$	Ξ_l	$\bar{b} \to \Lambda_b \pi^-$
	Pole-A	Σ_c^+	116.76 - 17.80i	Σ_c^0	146.77 - 7.80i	Σ_b^0	$\operatorname{Spin}(\operatorname{weak})$		
	Pole-B	Λ_c^+ Ξ_c^+	Isospin Spin(CQM)	Ξ_c^+	$\operatorname{Spin}(\operatorname{CQM})$	${\Lambda_b \over \Xi_b^0}$	${ m Spin(CQM)} { m Spin(CQM)}$	Ξ_{b}^{0}	Spin(CQM)
\mathbf{PC}		$\Xi_c^{\prime+}$	-2.61	$\Xi_c^{\prime+}$	-3.67	$\Xi_b^{\prime 0}$	Spin(weak)	$\Xi_b^{\prime 0}$	Spin(weak)
	DPE		$\operatorname{Spin}(\operatorname{weak})$		$\operatorname{Spin}(\operatorname{weak})$		Spin(weak)		Spin(weak)
	CS		$\operatorname{Spin}(\operatorname{weak})$		$\operatorname{Spin}(\operatorname{weak})$		$\operatorname{Spin}(\operatorname{weak})$		$\operatorname{Spin}(\operatorname{weak})$
	Total		114.15 - 17.80i		143.10 - 7.80i		0		0
	Pole-A	$\Sigma_c^+ ^2 P_{\rho}\rangle$	$\operatorname{Spin}(\operatorname{CQM})$	$\Sigma_c^0 ^2 P_{\rho} \rangle$	$\operatorname{Spin}(\operatorname{CQM})$	$\Sigma_b^0 ^2 P_{\rho} \rangle$	$\operatorname{Spin}(\operatorname{weak})$		
		$\Sigma_c^+ ^2 P_\lambda$	1.59	$\Sigma_c^0 ^2 P_\lambda \rangle$	2.72	$\Sigma_b^0 ^2 P_\lambda \rangle$	Spatial		
		$\Sigma_c^+ ^4 P_{\rho}\rangle$	-0.94	$\Sigma_c^0 ^4 P_{\rho} \rangle$	-1.34	$\Sigma_b^0 ^4 P_{\rho}$	Spatial		
		$\Lambda_c^+ ^2 P_{\rho}$	Isospin			$\Lambda_b ^2 P_{\rho}$	Isospin		
		$\Lambda_c^+ ^2 P_\lambda$	Isospin			$\Lambda_b ^2 P_\lambda$	Isospin		
		$\Lambda_c^+ ^4 P_{\rho}$	Isospin			$\Lambda_b ^4 P_{\rho}$	Isospin	0.0	
DV	Pole-B	$\Xi_c^+ ^2 P_{\rho}$	-3.32	$\Xi_c^+ ^2 P_{\rho}$	-6.02	$\Xi_b^0 ^2 P_{\rho}$	-7.95	$\Xi_b^0 ^2 P_{\rho}$	-11.25
ΡV		$\Xi_c^+ ^2 P_\lambda$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_c^+ ^2 P_\lambda$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_b^0 ^2 P_\lambda$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_b^0 ^2 P_\lambda$	$\operatorname{Spin}(\operatorname{CQM})$
		$\Xi_c^+ ^4 P_{\rho}$	-1.26	$\Xi_c^+ ^4 P_{\rho}\rangle$	-1.77	$\Xi_b^0 ^4 P_{\rho}$	-3.57	$\Xi_b^0 ^4 P_{\rho}$	-5.06
		$\Xi_c^{\prime+} ^2 P_{\rho}$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_c^{\prime+} ^2 P_{\rho}$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_b^{\prime 0} ^2 P_{\rho} \rangle$	$\operatorname{Spin}(\operatorname{CQM})$	$\Xi_b^{\prime 0} ^2 P_{\rho} \rangle$	$\operatorname{Spin}(\operatorname{CQM})$
		$\Xi_c^{\prime+} ^2 P_\lambda$	0.55	$\Xi_c^{\prime+} ^2 P_{\lambda}$	0.77	$\Xi_b^{\prime 0} ^2 P_\lambda \rangle$	$\operatorname{Spatial}$	$\Xi_b^{\prime 0} ^2 P_\lambda \rangle$	$\operatorname{Spatial}$
		$\Xi_c^{\prime+} ^4 P_\lambda \rangle$	-0.41	$\Xi_c^{\prime+} ^4 P_\lambda \rangle$	-0.58	$\Xi_b^{\prime 0} ^4 P_\lambda \rangle$	$\operatorname{Spatial}$	$\Xi_b^{\prime 0} ^4 P_\lambda \rangle$	$\operatorname{Spatial}$
	DPE		0		-9.73		0		-9.79
	CS		3.40		4.81		4.32		6.11
	Total		-1.32 + 0.0038i		-11.58 + 0.0055i		-7.20 - 0.0048i		-19.99 - 0.0068

explain the sizable branching ratio for $\Xi_c^0 \to \Lambda_c \pi$

3. $\Xi_Q \rightarrow \Lambda_Q \pi$

Processes	$\Xi_c^+ o \Lambda_c \pi^0$	$\Xi_c^0 o \Lambda_c \pi^-$	$\Xi_b^0 o \Lambda_b \pi^0$	$\Xi_b^- o \Lambda_b \pi^-$
Exp. Data		0.55 ± 0.20 [1]		$0.19 \pm 0.07 \sim 0.57 \pm 0.21$ [2]
MIT bag model [4]	0.0093	0.0087	0.059	0.2
Diquark model [4]			0.25	0.69
Duality [5]				0.63 ± 0.42
Current algebra [11]	0.386 ± 0.135	0.194 ± 0.07		
Current algebra [6]			$1 \sim 4$	$2\sim 8$
Current algebra [10]	< 0.6	< 0.3	0.09 - 0.37	0.19 - 0.76
Our results	1.11	0.58	0.017	0.14

- > The parity-conserving amplitudes of the pole terms are dominant for $\Xi_c \rightarrow \Lambda_c \pi$.
- > The importance of non-factorizable terms for $\Xi_b \rightarrow \Lambda_b \pi$.

3.4 The first study of $\Xi_c^0 \to \Xi^0 \pi^0 / \eta / \eta'$ @ Belle and Belle II

First Study of $\Xi_c^0 \rightarrow \Xi^0 \pi^0 / \eta / \eta'$

PRELIMINARY at Belle + Belle II ~1.4/ab:

First measurements of the branching fractions using combined data:

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 1.5 (\text{norm.})) \times 10^{-3}$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2 (\text{stat.}) \pm 0.2 (\text{syst.}) \pm 0.4 (\text{norm.})) \times 10^{-3}$ $\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3 \text{(stat.)} \pm 0.1 \text{(syst.)} \pm 0.3 \text{(norm.)}) \times 10^{-3}$ taking $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode (BR error dominate the uncertainties), favoriting predictions in SU(3) flavor symmetry [JHEP 02, 235 (2023)] First asymmetry parameter $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ measurement depending on $\frac{dN}{dcos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) cos\theta_{\Xi^0}$ through a simultaneous fit to Belle and Belle II data samples $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 (\text{stat.}) \pm 0.23 (\text{syst.})$ taking $\alpha(\Xi^0 \rightarrow \Lambda \pi^0) = -0.349 \pm 0.009$ (PDG) Belle II, 426 fb Belle, 980 fb 15000 PRELIMINARY PRELIMINARY 30000 9 2000 ັ<u>ສ</u>10000 ш₁₀₀₀₀ -0.5 $M(\Xi^0\eta')$ [GeV/c²] $M(\Xi^0\eta')$ [GeV/c² cosθ_ cos_θ

From Chengping Shen 第七届强子谱和强子结构研讨会 · 成都

Belle and Belle-II, JHEP10(2024)045

核科学与技术系

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

Peng-Yu Niu, Qian Wang, and Qiang Zhao, Phys. Rev. D 111, 093004 (2025)

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

 $\Xi_c^+ \to \Xi^0 \pi^+$

 $\Xi_c^0 \to \Xi^- \pi^+$

 $\Xi_c^0 \to \Sigma^+ K^-$

 $\Xi_c^0 \to \Omega^- K^+$

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

 $\Xi_c^+ \to \Xi^0 \pi^+$

 $\Xi_c^0 \to \Xi^- \pi^+$

 $\Xi_c^0 \to \Sigma^+ K^-$

 $Br(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) = (14.3 \pm 2.7) \times 10^{-3}$ $Br(\Xi_{c}^{0} \to \Sigma^{+}K^{-}) = (1.8 \pm 0.4) \times 10^{-3}$

 $\frac{\Gamma_{\Xi_{c}^{+}\to\Xi^{0}\pi^{+}}}{\Gamma_{\Xi_{c}^{0}\to\Xi^{-}\pi^{+}}} = \frac{\tau_{\Xi_{c}^{0}}\times\operatorname{Br}(\Xi_{c}^{+}\to\Xi^{0}\pi^{+})}{\tau_{\Xi_{c}^{+}}\times\operatorname{Br}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})} \approx 0.38$

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

TABLE X: The amplitudes of $\Xi_c^+ \to \Xi^0 \pi^+$ (in unit of $10^{-9} \text{ GeV}^{-1/2}$ for the real part and $10^{-13} \text{ GeV}^{-1/2}$ for the imaginary part). WS (SW) is used to label the pole terms that baryon weak transition either preceding (following) the strong meson emission.

3. Ξ_c

	DME	\mathbf{CS}	WS	SW						Total
	~	✓	×	Ξ_c^0			$\Xi_c^{\prime 0}$			
\mathbf{PC}	(34.41, 0)	(-5.62, 0)	$(0,\!0)$	(0, 0)			(-8.47, 0)			(20.32, 0)
	~	v	×	$ ^2P_{ ho}\rangle$	$ ^{2}P_{\lambda}\rangle$	$ ^4P_{ ho}\rangle$	$ ^{2}P_{\rho}\rangle$	$ ^{2}P_{\lambda}\rangle$	$ ^4P_{\lambda}\rangle$	
\mathbf{PV}	(-18.98, 0)	(5.34, 0)	(0,0)	(2.84, 6.04i)	(0,0)	(-4.22, -8.80i)	(0,0)	(4.12, 8.98i)	(-6.22, -13.26i)	(-17.11, -7.03i)

TABLE XI: The amplitudes of the $\Xi_c^0 \to \Xi^- \pi^+$ in unit of $10^{-9} \text{ GeV}^{-1/2}$.

	DME	\mathbf{CS}	WS		SW	Total
	1	×	Ξ_c^0		×	
\mathbf{PC}	(34.41, 0)	(0,0)	$(3.37, -3.04 \times 10^{-2}i)$		(0,0)	$(37.78, -3.04 \times 10^{-2}i)$
	v	×	Ξ_c^{*0}	$\Xi_{c}^{0}(1690)$	×	
PV	(-19.02, 0)	(0,0)	$(0.36, -5.37 \times 10^{-3}i)$	$(2.92, -3.04 \times 10^{-2}i)$	(0,0)	$(-15.74, -3.58 \times 10^{-2}i)$

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

TABLE XI: The amplitudes of the $\Xi_c^0 \to \Xi^- \pi^+$ in unit of $10^{-9} \text{ GeV}^{-1/2}$.

3. Ξ_c

	DME	\mathbf{CS}	WS		SW	Total
	~	×	Ξ_c^0		×	
PC	(34.41, 0)	(0,0)	$(3.37, -3.04 \times 10^{-2}i)$		$(0,\!0)$	$(37.78, -3.04 \times 10^{-2}i)$
	v	×	Ξ_c^{*0}	$\Xi_{c}^{0}(1690)$	×	
\mathbf{PV}	(-19.02, 0)	(0,0)	$(0.36, -5.37 \times 10^{-3}i)$	$(2.92, -3.04 \times 10^{-2}i)$	(0,0)	$(-15.74, -3.58 \times 10^{-2}i)$

TABLE XII: The amplitudes of $\Xi_c^0 \to \Xi^0 \pi^0$ (in unit of $10^{-9} \text{ GeV}^{-1/2}$ for the real part and $10^{-12} \text{ GeV}^{-1/2}$ for the imaginary part).

	DME	CS	WS		SW					Total
	×	✓	Ξ^0		Ξ_c^0		$\Xi_c^{\prime 0}$			
\mathbf{PC}	(0,0)	(3.98, 0)	(2.37, -21.34i)		(0, 0)		(5.95, 0)			(12.29, -21.34i)
	×	✓	Ξ*0	$\Xi^{0}(1690)$	$ ^2P_{ ho}\rangle$	$ ^{2}P_{\lambda}\rangle ^{4}P_{\rho}\rangle$	$ ^{2}P_{ ho}\rangle$	$ ^{2}P_{\lambda}\rangle$	$ ^4P_{\lambda}\rangle$	
\mathbf{PV}	(0,0)	(-3.77, 0)	(0.25, -3.66i)	(1.99, -20.73i)	(-1.99, -0.42i)	(0,0) $(2.97, 0.62i)$	(0, 0)	(-2.90, -0.63i)	(4.38, 0.93i)	(0.92, -23.90i)

3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c

3. Ξ_c 3.4 The Cabibbo-favored hadronic weak decays of the Ξ_c $\begin{bmatrix} 23 \\ 25 \\ 19 \end{bmatrix}_{tr}$ Branching ratio

43

Summary

 The hadronic weak decay can be described with the NRCQM framework

• Pole terms play a crucial role. There is direct evidence for pole terms which play a crucial role in Ξ_c

• Prob the light quark correlations inside hadrons

