

淬火和非淬火图像下单重味重子 谱学和衰变性质的研究

报告人:张紫乐

合作者:刘占伟,罗肆强,王福来,王波,许豪

arXiv:2504.17507; Phys. Rev. D 107, 034036 (2023).

第八届强子谱和强子结构研讨会 2025年7月11日-2025年7月15日 广西•桂林

研究背景 • 1F波单底重子的谱学和衰变研究 Λ_c(2910)和Λ_c(2940)的谱学研究 四. 总结

● 单重味重子: 由两个轻夸克(q = u, d, s)和一个重夸克(Q = c, b)组成的强子

●*SU*(3)味道对称性下,单重味重子可以分解为 $3_f \otimes 3_f = \overline{3}_f \oplus 6_f$

□单重味重子进展

实验上已发现的单粲重子

Λ_c/Σ_c				
BNL PRI 34 1125	Fermilab	SKAT	ARGUS	CLEO PRI 74 3331
$\Sigma_c(2455)$	$\Lambda_c(2286)$	$\Sigma_c(2520)$	$\Lambda_c(2625)$	$\Lambda_c(2595)$
1975	1976	19	93	1995
CLEO PRL 86, 4479 A _c (2880)	Belle PRL 94, 122002	BaBar PRL 98, 012001 Belle PRL 98, 262001	LHCb JHEP 05, 030	Belle PRL 130, 031901
$\Lambda_c(2765)$	$\Sigma_c(2800)$	$\Lambda_c(2940)$	$\Lambda_c(2860)$	$\Lambda_c(2910)$
2000	2004	2006	2017	2022
$\Xi_c^{(\prime)}$				
CERN PLB 122 455	CLEO PRI 75 4364	CLEO PRI 82 492	CLEO PRL 83 3390	CLEO PRI 86 4243
$\Xi_c(2470)$	$\Xi_c(2645)$	$\Xi_c'(2570)$	$\Xi_c(2815)$	$\Xi_c(2790)$
1983	1995	1998	1999	2000
Belle PRL 97, 162001 B $\Xi_c(3080)$ PRD 7 $\Xi_c(2970)$ $\Xi_c($	$\begin{array}{c} \text{BaBa}\\ \text{BaBar} & \text{PRD 77, 0}\\ 7,031101 & \Xi_c(31)\\ 2930) & \Xi_c(30)\\ \hline \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \text{LHCb} \\ \text{PRL 124, 222} \\ \Xi_c(2965) \\ 3 \\ \Xi_c(2939) \\ \Xi_c(2923) \end{array} $	001 PRD 108, 012020 $\Xi_c(2880)$
2006	2007	2018	2020	2022
Ω_c WA62 ZPC 28, 175 $\Omega_c(2700)$	BaBar PRL 97, 232001 $\Omega_c(2770)$	LHCb PRL 118, 13 $\Omega_c(3065)$ $\Omega_c(3050)$ $\Omega_c(3000)$	82001 $\Omega_c(3188)$ F $\Omega_c(3119)$ $\Omega_c(3090)$	LHCb RL 131, 131902 $\Omega_c(3185)$ $\Omega_c(3327)$
1985	2006	2017		2023 Year
Phys	s. Rev. D	,034002	108 (20	23)

实验上已发现的单底重子

$\frac{\Lambda_b/\Sigma_b}{\begin{array}{c} \text{CERN R415} \\ \text{LNC 31, 97} \\ \Lambda_b(5620) \end{array}}$	$\begin{array}{c} \text{CDF}\\ \text{PRL 99, 20200}\\ \Sigma_b(5835)\\ \Sigma_b(5815) \end{array}$	LHCb 1 PRL 109, 172003 $\Lambda_b(5920)$ $\Lambda_b(5912)$	³ LHCb PRL 122, 012001 $\Sigma_b(6097)$	LHCb PRL 123, 152001 $\Lambda_b(6152)$ $\Lambda_b(6146)$	$\begin{array}{c} \text{CMS} \\ \text{PLB 803, 135345} \\ \text{LHCb} \\ \text{JHEP 06, 136} \\ \Lambda_b(6072) \end{array}$
1981	2007	2012	2018	2019	2020
	CMS PI PRL 108, 252002 $\Xi_b (5945)^0$	LHCb RL 114, 062004 $\Xi_b(5955)^-$ PRL 1 $\Xi_b(5935)^ \Xi_b$	LHCb CMS 121,072002 PRL 126,2 (6227) Ξ _b (610	$\begin{array}{c} \text{LHCb} \\ \text{PRL 128, 1620} \\ \text{552003} \Xi_b(6333) \\ 0)^- \Xi_b(6327) \end{array}$	LHCb 01 PRL 131, 171901 $\Xi_b (6095)^0$ $\Xi_b (6087)^0$
1995	2012	2014	2018 202	1 2022	2023
Ω_b	D0		PRL	LHCb 124, 082002	
PRL 10	01, 232002		$\Omega_b(6330)$	$\Omega_b(6350)$	
$\Omega_b($	6046)		$\Omega_b(6316)$	$\Omega_b(6340)$	
2	008			2020	Year

50年至今已有30多个单 粲重子被发现,20多个 单底重子被发现;

- 绝大多数是本世纪发现的;
- 这么多发现的单重味重
 子为我们理解单重味重
 乙炔 医提供了好的其叫

子性质提供了好的基础。

□单重味重子进展

- 单重味重子的研究现状:
 - ✔几乎完备的1S态
 - ✓大量的1P候选态
 - ✓少数的1D、2S、2P候选态
 - ✓离这些候选态谱学位置比较
 近的1F候选态尚未发现
- ◆传统势模型在描述当前已发现的1S、1P、 1D、2S中比较好: ◆1F态属于较高分波态,对其进行理论预言, 可以验证模型是否可靠: ◆在整个单重味重子家族中,已知的两个2P态 候选者 $\Lambda_c(2910)$ 和 $\Lambda_c(2940)$ 是当前有争议的 两个态。

$\Box \Lambda_c(2940) \pi \Lambda_c(2910)$ 的发现

 $\Box \Lambda_{c}(2940) \pi \Lambda_{c}(2910)$ 的谱学

传统势模型下 Λ_c^+ 重子谱学预测

$J^P(nL)$	Exp. [1]	This work	Ref. [9]	Ref. [50]	Ref. [51]
$\frac{1}{2}^{+}(1S)$	2286.86	2286	2286	2286	2265
$\frac{1}{2}^{+}(2S)$	2766.6	2766	2769	2791	2775
$\frac{1}{2}^{+}(3S)$		3112	3130	3154	3170
$\frac{1}{2}^{+}(4S)$		3397	3437		
$\frac{1}{2}^{-}(1P)$	2592.3	2591	2598	2625	2630
$\frac{3}{2}^{-}(1P)$	2628.1	2629	2627	2636	2640
$\frac{1}{2}^{-}(2P)$	2020.2	2989	2983		[2780]
$\frac{3}{2}^{-}(2P)$	2939.3	3000	3005		[2840]
$\frac{1}{2}^{-}(3P)$		3296	3303		[2830]
$\frac{3}{2}^{-}(3P)$		3301	3322		[2885]
$\frac{3}{2}^{+}(1D)$		2857	2874	2887	2910
$\frac{5}{2}^{+}(1D)$	2881.53	2879	2880	2887	2910
$\frac{3}{2}^{+}(2D)$		3188	3189	3120	3035
$\frac{5}{2}^{+}(2D)$		3198	3209	3125	3140
$\frac{5}{2}^{-}(1F)$		3075	3097	[2872]	[2900]
$\frac{7}{2}^{-}(1F)$		3092	3078		3125
$\frac{7}{2}^{+}(1G)$		3267	3270		3175
$\frac{9}{2}^+(1G)$		3280	3284		ĥ

- 1. 已发现的大部分 Λ_c 重子可以通过传统势模型描述得很好;
- 2. Λ_c(2940)的实验值要比传统强子谱预言低70MeV左右;
- 3. Λ_c(2910)在强子谱中的位置尚不明确。

▶ 传统强子

Phys. Rev. D 106, 074020解释Λ_c(2910)作为1P态的ρ模激发.....

▶ 分子态

.

≻

Phys. Rev. D 101, 094035 (2020)

Phys. Rev. D 82, 114029

➢ 裸核+S波强子道耦合 Eur. Phys. J. C 80 (2020) 4, 301

Eur. Phys. J. A 51, 82 (2015)

口存在低质量问题的强子态

几个具有低质量问题强子的实验质量(红色点)与对应裸质量(蓝色实线)的比较

▶ 确定离这些当前已发现的单底重子谱学位置相对较近的1F态的谱学位置,以及给出寻找他们的可能衰变道;

在耦合道框架下,进一步引入强子道自相互作用去理解Λ_c(2940);

新发现的Λ_c(2910)如何解释?

二、1F波单底重子的谱学和衰变研究

Based on Zi-Le Zhang et al., Spectroscopic properties of 1*F*-wave singly bottom baryons, arXiv:2504.17507.

口理论框架

质量谱计算: 传统势模型

$$\hat{H} = \sum_{i} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) + \sum_{i < j} \left(H_{ij}^{\text{conf}} + H_{ij}^{\text{hyp}} + H_{ij}^{\text{so}(\text{cm})} + H_{ij}^{\text{so}(\text{tp})} \right)$$

$$H_{ij}^{\text{conf}} = -\frac{2}{3} \frac{\alpha_{s}}{r_{ij}} + \frac{b}{2} r_{ij} + \frac{1}{2} C$$

$$H_{ij}^{\text{hyp}} = \frac{2\alpha_{s}}{3m_{i}m_{j}} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij}) \mathbf{s}_{i} \cdot \mathbf{s}_{j} + \frac{1}{r_{ij}^{3}} S(\mathbf{r}, \mathbf{s}_{i}, \mathbf{s}_{j}) \right]$$

$$H_{ij}^{\text{so}(\text{cm})} = \frac{2\alpha_{s}}{3r_{ij}^{3}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_{i} \cdot \mathbf{s}_{i}}{m_{i}^{2}} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_{j} \cdot \mathbf{s}_{j}}{m_{j}^{2}} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_{j} \cdot \mathbf{s}_{j}}{m_{i}m_{j}} \right)$$

$$H_{ij}^{\text{so}(\text{tp})} = -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\text{conf}}}{\partial r_{ij}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_{i} \cdot \mathbf{s}_{i}}{m_{i}^{2}} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_{j} \cdot \mathbf{s}_{j}}{m_{j}^{2}} \right).$$

$$\tilde{\delta}(r) = \frac{\sigma^{3}}{\pi^{3/2}} e^{-\sigma^{2}r^{2}} \qquad S(\mathbf{r}, \mathbf{s}_{i}, \mathbf{s}_{j}) = \frac{3\mathbf{s}_{i} \cdot \mathbf{r}_{ij}\mathbf{s}_{j} \cdot \mathbf{r}_{ij}}{r_{ij}^{2}} - \mathbf{s}_{i} \cdot \mathbf{s}_{j}}$$

数值方法: 高斯展开法

三体薛定谔方程

$$\begin{pmatrix} \sum_{i=1}^{3} \frac{p_{i}^{2}}{2m_{i}} + \sum_{i < j} V_{ij}(\mathbf{r}) \end{pmatrix} |\Psi_{JM}\rangle = E |\Psi_{JM}\rangle$$

$$|\Psi_{JM}\rangle = \sum_{n_{\rho}^{g} n_{\lambda}^{g}} C_{n_{\rho}^{g} n_{\lambda}^{g}} |\psi_{JM}^{n_{\rho}^{g} n_{\lambda}^{g}}\rangle$$

$$|\psi_{JM}^{n_{\rho}^{g} n_{\lambda}^{g}}\rangle = |\phi^{\text{color}} \phi^{\text{flavor}}[[[s_{q_{1}} s_{q_{2}}]_{s_{\ell}} [\phi_{n_{\rho}^{g} l_{\rho}}(\boldsymbol{\rho}) \phi_{n_{\lambda}^{g} l_{\lambda}}(\boldsymbol{\lambda})]_{L}]_{j_{\ell}} s_{Q_{3}}]_{JM}\rangle,$$

这里的 $\phi_{n_{\rho}l_{\rho}}(\rho)$ 和 $\phi_{n_{\lambda}l_{\lambda}}(\lambda)$ 分别表示高斯基下 ρ 模和 λ 模的径向波函数。 最后,上面的三体薛定谔方程可以化为下面的特征值方程:

$$\sum_{n_{\rho}^{g} n_{\lambda}^{g}} H_{n_{\rho}^{g'} n_{\lambda}^{g'} n_{\rho}^{g} n_{\lambda}^{g}} C_{n_{\rho}^{g} n_{\lambda}^{g}} = E \sum_{n_{\rho}^{g} n_{\lambda}^{g}} N_{n_{\rho}^{g'} n_{\lambda}^{g'} n_{\rho}^{g} n_{\lambda}^{g}} C_{n_{\rho}^{g} n_{\lambda}^{g}}$$

OZI允许的两体强衰变: QPC模型

QPC模型中的跃迁算符

$$\hat{\mathcal{T}} = -3\gamma \sum_{m} \langle 1, m; 1, -m|0, 0 \rangle \int d^{3}\mathbf{p}_{i} d^{3}\mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j})$$

$$\times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2}\right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{1,-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j}),$$

 $A \rightarrow BC$ 过程的衰变分波振幅可以表示为

$$\mathcal{M}_{A\to BC}^{L_{BC}S_{BC}}(p) = \langle BC, L_{BC}, S_{BC}, p | \hat{\mathcal{T}} | A \rangle,$$

这里,*S_{BC}*是末态*BC*的相对自旋,*L_{BC}*表示*BC*之间的相对轨道角动量,*p*指的是 在初态*A*的质心系下*B*或*C*的动量。最后,分宽度可以表示为

$$\Gamma_{A\to BC} = 2\pi \frac{E_B E_C}{M_A} p \sum_{L_{BC} S_{BC}} |\mathcal{M}_{A\to BC}^{L_{BC} S_{BC}}(p)|^2$$

■实验上已发现的单底重子的质量谱可以通过传统势模型描述的非常好;

■质量谱可以把已经发现的单底重子进行定位,但量子数的进一步确定需要强子的其它性质进一步辅助;

Decay channels	M_f (MeV)	$\Lambda_b(1F,5/2^-)$	$\Lambda_b(1F,7/2^-)$
$\overline{\Sigma_b(1S,1/2^+)\pi}$	5811	0.6	0.3
$\Sigma_b(1S,3/2^+)\pi$	5834	0.6	1.1
$\Sigma_{b2}(1P, 3/2^{-})\pi$	6082	11.7	0.2
$\Sigma_{b2}(1P, 5/2^{-})\pi$	6089	1.0	12.3
$Nar{B}$		24.9	5.9
$Nar{B}^*$		20.2	43.9
		0.4	0.4
Total		59.4	64.1

■ $\Lambda_b \rightarrow N\overline{B}^{(*)}$ 衰变过程中 ρ 模保持的很好, 这是 Λ_b 衰变中典型的衰变模式

Decay channels	M_f (MeV)	$\Xi_b(1F, 5/2^-)$	$\Xi_b(1F, 7/2^-)$
$\Xi_{b2}'(1P, 3/2^{-})\pi$	6211	2.0	0.1
$\Xi_{b2}'(1P, 5/2^{-})\pi$	6220	0.2	2.2
$\Sigma_b(1S, 1/2^+)\bar{K}$	5811	1.4	0.5
$\Sigma_b(1S,3/2^+)\bar{K}$	5834	1.1	2.2
\Lambdaar{B}		2.8	1.1
$\Sigma ar{B}$		27.0	1.9
\Lambdaar{B}^*		3.1	6.0
$\Sigma ar{B}^*$		1.1	5.4
•••		0.5	0.5
Total		39.2	19.9

■ 两个E_b(1F)态的总宽度较窄

 $\Lambda_b(1F)$

	_		
러뷰		7	$\mathbf{\nabla}$
丁出	R	2	Ζ
		-	

 $\Sigma_{bj_{\ell}}(1F)$

Decay channels	M_f (MeV)	$\Sigma_{b2}(1F, 3/2^{-})$	$\Sigma_{b2}(1F, 5/2^{-})$	$\Sigma_{b3}(1F, 5/2^{-})$	$\Sigma_{b3}(1F,7/2^{-})$	$\Sigma_{b4}(1F,7/2^{-})$	$\Sigma_{b4}(1F, 9/2^{-})$	
$\Lambda_b(2S,1/2^+)\pi$	6072	7.1	7.5	×	×	5.1	5.2	
$\Lambda_b(1P, 1/2^-)\pi$	5912	2.7	0.1	1.6	0.9	5.5	2.1	■ ×表示相关的过程禁戒,这
$\Lambda_b(1P,3/2^-)\pi$	5920	0.6	3.2	2.0	2.7	5.0	8.7	
$\Lambda_b(2P, 1/2^-)\pi$	6290	3.6	0.0	0.0	0.0	0.0	0.0	
$\Lambda_b(2P, 3/2^-)\pi$	6298	0.6	3.9	0.0	0.1	0.0	0.0	
$\Lambda_b(1D,3/2^+)\pi$	6146	10.9	0.6	13.9	2.8	4.6	0.4	度不守恒的结果
$\Lambda_b(1D,5/2^+)\pi$	6152	1.0	11.2	4.5	15.9	0.9	5.2	及十九世的祖水
$\Lambda_b(1F, 5/2^-)\pi$	6344	16.7	0.9	2.2	0.1	_	3 <u></u>	■ 洪乃到米们下 (1 F IP) 、
$\Lambda_b(1F,7/2^-)\pi$	6348	0.0	15.9	0.1	2.3	<u> </u>	3 <u></u>	■ 砂风到关队2b2(1F, J) →
$\Sigma_{b0}(1P, 1/2^{-})\pi$	6097	×	×	2.4	2.5	×	×	
$\Sigma_{b1}(1P, 1/2^{-})\pi$	6086	0.1	0.9	4.0	2.3	1.8	0.1	$\Lambda_b(1D, J^*)$ 等过程通过S波表
$\Sigma_{b1}(1P, 3/2^{-})\pi$	6098	1.4	0.9	4.7	6.4	0.7	2.2	
$\Sigma_{b2}(1P, 3/2^{-})\pi$	6082	2.1	2.1	1.6	0.9	5.8	1.1	变,所有它们的衰变宽度较
$\Sigma_{b2}(1P, 5/2^{-})\pi$	6089	3.1	3.2	1.2	2.2	1.9	6.4	
$\Sigma_{b2}(1D, 3/2^+)\pi$	6313	17.6	1.4	0.6	0.1	0.0	0.0	大
$\Sigma_{b2}(1D, 5/2^+)\pi$	6319	1.5	18.6	0.1	0.7	0.0	0.0	
$\Sigma_{b3}(1D, 5/2^+)\pi$	6286	4.2	0.9	24.3	0.4	0.7	0.1	■ Σ (1 F)没有通过 S 波衰变的
$\Sigma_{b3}(1D,7/2^+)\pi$	6290	0.8	4.2	0.4	24.4	0.1	0.7	= 264(11)较有远过5级浓文时
NB		0.2	0.0	0.3	2.0	0.1	3.9	送甘中中中北方
$\Delta \bar{B}$		2.1	0.5	—	-	-	12-	但,共觅侵相刈牧乍
$N\bar{B}^*$		0.4	0.9	5.0	3.8	7.5	4.3	
		1.4	1.4	2.5	2.6	1.6	1.6	
Total		78.1	78.3	71.4	73.1	41.3	42.0	

	_		
诵	友	र्	٦ ۲

 $\Xi'_{bj_\ell}(1F)$

Decay channels	M_f (MeV)	$\Xi_{b2}'(1F, 3/2^{-})$	$\Xi_{b2}'(1F, 5/2^-)$	$\Xi_{b3}'(1F, 5/2^-)$	$\Xi_{b3}'(1F,7/2^{-})$	$\Xi_{b4}'(1F,7/2^{-})$	$\Xi_{b4}'(1F, 9/2^{-})$	
$\Xi_b(2S, 1/2^+)\pi$	6253	0.5	0.6	×	×	1.1	1.2	
$\Xi_b(1P, 1/2^-)\pi$	6087	0.8	0.0	0.7	0.4	3.8	0.4	
$\Xi_b(1P, 3/2^-)\pi$	6095	0.2	0.9	0.8	1.2	1.8	5.2	
$\Xi_b(1D, 3/2^+)\pi$	6327	3.2	0.7	5.2	0.8	3.4	0.0	
$\Xi_b(1D, 5/2^+)\pi$	6333	1.0	3.4	1.3	5.7	0.4	3.6	
$\Xi_{b1}'(1P, 3/2^{-})\pi$	6220	0.3	0.3	1.1	1.5	0.2	0.8	
$\Xi_{b2}'(1P, 3/2^{-})\pi$	6211	0.4	0.4	0.6	0.1	1.5	0.3	
$\Xi_{b2}'(1P, 5/2^{-})\pi$	6220	0.5	0.6	0.2	0.8	0.5	1.6	
$\Xi_{b2}'(1D, 3/2^+)\pi$	6440	6.0	0.2	0.2	0.0	0.0	0.0	
$\Xi_{b2}'(1D, 5/2^+)\pi$	6446	0.2	6.1	0.0	0.2	0.0	0.0	「以S波和P波表受的过程,
$\Xi_{b3}'(1D, 5/2^+)\pi$	6424	0.6	0.1	8.5	0.1	0.2	0.0	
$\Xi_{b3}'(1D,7/2^+)\pi$	6428	0.1	0.6	0.1	8.6	0.0	0.2	宽度相对较大
$\Lambda_b(1S,1/2^+)ar{K}$	5619	0.0	0.0	×	×	1.2	1.2	
$\Lambda_b(1P, 1/2^-)\bar{K}$	5912	0.9	0.2	1.9	1.1	5.7	1.2	山市古八洲喜亦的过程
$\Lambda_b(1P, 3/2^-)\bar{K}$	5920	0.7	1.2	2.2	3.1	3.4	8.1	1 以史向万仮哀文的过住,
$\Lambda_b(1D,3/2^+)\bar{K}$	6146	31.6	0.2		-	_	-	
$\Lambda_b(1D,5/2^+)\bar{K}$	6152	0.1	32.1	—	—	—	-	宽度相对较小
$\Sigma_b(1S,1/2^+)ar{K}$	5816	0.3	0.1	1.0	1.4	1.0	0.7	
$\Sigma_b(1S,3/2^+)\bar{K}$	5835	0.4	0.6	2.7	2.5	1.4	1.8	\Box'' (1E) 沿右 C 油 音 本 道
$\Sigma_{b1}(1P, 1/2^{-})\bar{K}$	6086	16.0	0.1	0.8	0.5	0.0	0.0	12b4(17)仅有5级农文垣,
$\Sigma_{b1}(1P, 3/2^-)\overline{K}$	6098	3.4	19.8	0.5	0.8	0.0	0.0	
$\Sigma_{b2}(1P, 3/2^{-})\bar{K}$	6082	6.7	1.7	35.2	0.0	0.2	0.0	所以对应的宽度相对较小
$\Sigma_{b2}(1P, 5/2^{-})\bar{K}$	6089	2.0	7.5	2.4	37.3	0.0	0.1	
$\Lambda_b(1S,1/2^+)ar{K}^*$	5619	0.6	0.6	1.3	1.3	0.2	0.2	
$\Lambda \bar{B}$		0.5	0.0	0.6	2.3	0.1	4.8	
$\Sigma \overline{B}$		2.8	0.1	2.5	2.7	0.1	4.4	
$\Lambda ar{B}^*$		1.2	2.6	5.9	5.4	8.3	4.8	
$\Sigma ar{B}^*$		4.6	10.5	7.2	10.5	3.9	2.4	
<u></u>		0.5	0.6	2.5	2.2	1.0	0.4	
Total		86.1	91.8	85.4	90.5	39.4	43.4	

第八届强子谱和强子结构研讨会

17

Decay channels	M_f (MeV)	$\Omega_{b2}(1F, 3/2^{-})$	$\Omega_{b2}(1F, 5/2^{-})$	$\Omega_{b3}(1F, 5/2^{-})$	$\Omega_{b3}(1F,7/2^{-})$	$\Omega_{b4}(1F,7/2^{-})$	$\Omega_{b4}(1F, 9/2^{-})$
$\overline{\Xi_b(1S,1/2^+)}\bar{K}$	5795	0.0	0.0	×	×	1.9	1.9
$\Xi_b(1P, 1/2^-)\bar{K}$	6087	2.0	1.3	2.3	1.4	11.8	0.6
$\Xi_b(1P, 3/2^-)\bar{K}$	6095	3.0	3.9	2.6	3.7	4.2	15.0
$\Xi_{b}'(1S, 3/2^{+})\bar{K}$	5950	0.3	0.4	1.2	1.3	0.7	0.9
$\Xi_{b1}'(1P, 1/2^{-})\bar{K}$	6206	12.2	0.0	0.4	0.3	0.1	0.0
$\Xi_{b1}'(1P, 3/2^{-})\bar{K}$	6220	2.2	13.8	0.2	0.3	0.0	0.0
$\Xi_{b2}'(1P, 3/2^{-})\bar{K}$	6211	4.5	0.6	22.6	0.0	0.1	0.0
$\Xi_{b2}'(1P, 5/2^{-})\bar{K}$	6220	0.6	4.5	1.4	22.3	0.0	0.1
$\Xi \overline{B}$		55.8	1.4	36.9	22.7	0.7	43.9
\Xiar{B}^*		69.4	162.8	72.4	121.7	43.2	26.3
•••		1.2	1.2	1.6	1.7	0.5	0.3
Total		151.2	189.9	141.6	175.4	63.2	89.0

◆重夸克*b*作为旁观者,两个轻夸克*ss*形成一个团簇, $\Xi^{(*)}\overline{B}^{(*)}$ 道与它的这一性质对应,其衰变宽度相对较大; ◆由于涉及到*S*波的衰变道的阈值在 $\Omega_b(1F)$ 的质量上面, $\Omega_b(1F)$ 没有通过*S*波衰变的强子道。

三、 $\Lambda_c(2910)$ 和 $\Lambda_c(2940)$ 的谱学研究

Based on Zi-Le Zhang et al., $\Lambda_c(2910)$ and $\Lambda_c(2940)$ as conventional baryons dressed with the D^*N channel, Phys. Rev. D 107, 034036 (2023).

强子的裸态可以和相应强子道耦合,引起强子的质量移动, 强子物理态波函数可以写为

 $|\Psi
angle = c_0 |\Psi_0
angle + \int \mathrm{d}^3 \mathbf{p} \chi_{BC}(\mathbf{p}) |BC,\mathbf{p}
angle$

这里, |Ψ₀)是裸态**udc**核, c₀是裸核的几率振幅; |BC, **p**)是强子道**D**^{*}N, χ_{BC}(**p**)是强子道**D**^{*}N的波函数;

同时哈密顿量定义为

得到耦合道方程:

$$\hat{H} = \hat{H}_0 + \hat{H}_I + \hat{H}_{BC},$$

裸态和强

 \hat{H}_0 只对裸态| Ψ_0 〉起作用, \hat{H}_{BC} 描述 $D^*N - D^*N$ 的相互作用, \hat{H}_I 连接裸态和强子道的跃迁哈密顿量。

方程的求解: 高斯展开法
$$\chi_{BC}(\mathbf{p}) = \sum_{i=1}^{N_{max}} C_{il}\phi_{ilm}^{p}(\mathbf{p})$$

 $\phi_{nlm}^{r}(\nu_{n}, \mathbf{r}) = N_{nl}r^{l}e^{-\nu_{n}r^{2}}Y_{lm}(\hat{\mathbf{r}})$ $\phi_{nlm}^{p}(\nu_{n}, \mathbf{p}) = (-i)^{l}\phi_{nlm}^{r}\left(\frac{1}{4\nu_{n}}, \mathbf{p}\right)$
 $v_{n} = 1/r_{n}^{2},$ $r_{n} = r_{1}a^{n-1}$ $(n = 1, 2...N_{max})$
哈密顿量对应的矩阵元可以写为

$$\begin{split} T_{fi} &= \int d^{3}\mathbf{p}' \phi_{flm}^{p*}(\nu_{f},\mathbf{p}') E_{BC}(\mathbf{p}') \phi_{ilm}^{p}(\nu_{i},\mathbf{p}'), \\ \mathcal{M}_{fi} &= \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \frac{H_{\Psi_{0} \to BC}^{*}(\mathbf{p}) H_{\Psi_{0} \to BC}(\mathbf{p}')}{M - M_{0}} \\ &\times \phi_{flm}^{p*}(\nu_{f},\mathbf{p}') \phi_{ilm}^{p}(\nu_{i},\mathbf{p}), \\ V_{fi} &= \int d^{3}\mathbf{p}' d^{3}\mathbf{p} \phi_{flm}^{p*}(\nu_{f},\mathbf{p}') V_{BC \to BC}(\mathbf{p},\mathbf{p}') \phi_{ilm}^{p}(\nu_{i},\mathbf{p}), \\ N_{if} &= \int d^{3}\mathbf{r}' \phi_{flm}^{r*}(\nu_{f},\mathbf{r}') \phi_{ilm}^{r}(\nu_{i},\mathbf{r}'). \end{split}$$

强子
道的
自由
部分
$$N_{if} = \int d^{\circ}\mathbf{r} \, \phi_{flm}^{\circ}(U_{f},\mathbf{r}) \phi_{ilm}^{\circ}(U_{i},\mathbf{r}).$$

$$N_{if} = \int d^{\circ}\mathbf{r} \, \phi_{flm}^{\circ}(U_{f},\mathbf{r}) \phi_{ilm}^{\circ}(U_{i},\mathbf{r}).$$

$$\mathbf{k}_{if} = \int d^{\circ}\mathbf{r} \, \phi_{flm}^{\circ}(U_{f},\mathbf{r}) \phi_{ilm}^{\circ}(U_{i},\mathbf{r}).$$

强子-强子有

口裸质量和相应的波函数:传统势模型

Ph 密 顿量

$$H = \sum_{i=1}^{3} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(\mathbf{r})$$

$$V_{ij} = H_{ij}^{\text{conf}} + H_{ij}^{\text{hyp}} + H_{ij}^{\text{so}(\text{cm})} + H_{ij}^{\text{so}(\text{tp})}$$

$$H_{ij}^{\text{conf}} = -\frac{2\alpha_s}{3r_{ij}} + \frac{b}{2}r_{ij} + \frac{1}{2}C$$

$$H_{ij}^{\text{hyp}} = \frac{2\alpha_s}{3m_im_j} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij})\mathbf{s}_i \cdot \mathbf{s}_j + \frac{1}{r_{ij}^3} S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) \right]$$

$$H_{ij}^{\text{so}(\text{cm})} = \frac{2\alpha_s}{3r_{ij}^3} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_i - \mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_j}{m_i m_j} \right)$$

$$H_{ij}^{\text{so}(\text{tp})} = -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\text{conf}}}{\partial r_{ij}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} \right).$$

$$\tilde{\delta}(r) = \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2 r^2} \quad S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) = \frac{3\mathbf{s}_i \cdot \mathbf{r}_{ij}\mathbf{s}_j \cdot \mathbf{r}_{ij}}{r_{ij}^2} - \mathbf{s}_i \cdot \mathbf{s}_j$$
Phys. Rev. D 108, 034002 (2023)

高斯展开法求解薛定谔方程:

 $|H|\Psi_{JM}
angle=E|\Psi_{JM}
angle$

$$\sum_{n_{\rho}^{g} n_{\lambda}^{g}} H_{n_{\rho}^{g'} n_{\lambda}^{g'} n_{\rho}^{g} n_{\lambda}^{g}} C_{n_{\rho}^{g} n_{\lambda}^{g}} = E \sum_{n_{\rho}^{g} n_{\lambda}^{g}} N_{n_{\rho}^{g'} n_{\lambda}^{g'} n_{\rho}^{g} n_{\lambda}^{g}} C_{n_{\rho}^{g} n_{\lambda}^{g}}$$

口裸核和中间态的耦合: QPC模型

QPC模型的算符为

$$\hat{\mathcal{T}} = -3\gamma \sum_{m} \langle 1, m; 1, -m | 0, 0 \rangle \int d^{3} \mathbf{p}_{i} d^{3} \mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j}) \\ \times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2} \right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{1,-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j}).$$

裸核到强子-强子道的跃迁振幅可以写为

(

$$M^{SL}_{A\to BC}(p) = \langle BC, S, L, p | \hat{\mathcal{T}} | A \rangle,$$

γ值: 重现 Σ_c (2520)的宽度,最终被确定为9.45。

裸的 $\Lambda_c(2P)$ 耦合到S波 D^*N 的跃迁振幅:

$$H_{\Lambda_c^{\text{bare}}(2P,1/2^-)\to D^*N}(\mathbf{p}) = \langle D^*N, \mathbf{p} | \hat{H}_I | \Lambda_c^{\text{bare}}(2P,1/2^-) \rangle$$
$$H_{\Lambda_c^{\text{bare}}(2P,3/2^-)\to D^*N}(\mathbf{p}) = \langle D^*N, \mathbf{p} | \hat{H}_I | \Lambda_c^{\text{bare}}(2P,3/2^-) \rangle$$

$$\mathcal{M}_{fi} = \int d^3 \mathbf{p}' d^3 \mathbf{p} \frac{H^*_{\Psi_0 \to BC}(\mathbf{p}) H_{\Psi_0 \to BC}(\mathbf{p}')}{M - M_0}$$
$$\times \phi^{p*}_{flm}(\nu_f, \mathbf{p}') \phi^p_{ilm}(\nu_i, \mathbf{p}),$$

 $\square D^*N$ 手征有效势

计算方法: 手征有效场理论;

手征有效场理论:低能有效场理论,研究对象为强子,最初广泛应用于NN系统,并获得了极大的成功。 **在重强子系统的应用**:重夸克对称性,简化计算。

费曼图:领头阶接触项图、领头阶单π交换图、次领头阶双π交换图

Phys. Rev. D 101, 094035 (2020)

D*N 0(1/2⁻):单π和双π势提供排斥作用,吸引作用主要由接触项势提供;
 D*N 0(3/2⁻):单π和接触项势提供吸引作用,双π势提供排斥作用。

动量空间下有效势

口计算结果

picture

引入非淬火效应前后 $\Lambda_c(2P, 1/2^-)$ 和 $\Lambda_c(2P, 3/2^-)$ 的质量比较

淬火; 非淬火不考虑*D***N*相互作用; 非淬火考虑*D***N*相互作用的结果

Cases	Quenched picture		Unquenched	Unquenched picture without D^*N interaction			d picture with D	*N interaction
J^P	M_0 (M	eV)	M (MeV)	$r_{\rm RMS}$ (fm)	P(udc) (%)	M (MeV)	$r_{\rm RMS}$ (fm)	P(udc) (%)
$1/2^{-}$	Ref. [3]	2989	2974	×	×	2936	1.93	16.2
$3/2^{-}$		3000	2933	1.67	39.7	2908	1.31	29.4
$1/2^{-}$	Ref. [13]	2980	2955	×	×	2934	1.83	21.9
$3/2^{-}$		3004	2935	1.74	37.0	2909	1.31	27.9
$1/2^{-}$	Ref. [2]	2983	2962	×	×	2935	1.87	19.8
$3/2^{-}$		3005	2935	1.76	36.3	2909	1.32	27.5
$1/2^{-}$	Ref. [46]	2996	2985	×	×	2937	2.00	13.4
$3/2^{-}$		3012	2937	1.95	31.4	2911	1.33	25.2
$1/2^{-}$	Ref. [4]	3030	3036	×	×	2940	2.32	5.08
$3/2^{-}$		3035	2943	2.93	15.8	2916	1.38	18.7

● Λ_c(2P,3/2⁻)的质量移动比Λ_c(2P,1/2⁻)更强;

picture

- 引入*D***N*相互作用后,两个态的裸质量下移至2911 MeV和2937 MeV,分别对应Λ_c(2910)和Λ_c(2940)实验值;
- 非淬火图像下,两个Λ_c(2P)态出现质量反转现象,这种质量反转在N(1535)1/2⁻和N(1520)3/2⁻中出现;

Experimental

value

▶ 物理态是裸态和D*N的混合,有显著的D*N成分。

- 对1F波单底重子的谱学和衰变行为进行理论预言,为他们的进一步发现
 - 提供理论支持,并借此检验理论的可靠性;
- 在完整的耦合道框架下我们重现出Λ_c(2940)和Λ_c(2910)的实验质量;
- 强子-强子道的自相互作用对于理解强子谱的反常现象比较重要;
- 实验方面的改进和更新可以促进强子态的发现和量子数的确定。

