

第八届强子谱和强子结构研讨会@广西师范大学 Probing DK interaction in B decays and heavy-ion collisions

Reporter: Ming-Zhu Liu (刘明珠)
Collaborators: Li-Sheng Geng (耿立升) Zhi-Wei Liu(刘志伟)
Yi-Bo Shen (沈怡博)
Based on: Phys. Rev. D 109 (2024) 056014 ArXiv: 2506.23476

Exotic states and hadron-hadron interactions

- Study the *DK* interaction in B decays
- Study the *DK* interaction in heavy-ion collisions
- ➢ Summary and Outlook

Strong interaction and hadron structure

Cornell model
$$V_0(r) = -\frac{4\alpha_s}{3r} + \sigma r$$

E. Eichten et al., Phys. Rev. Lett. 34 (1975) 369-372

Godfrey-Isgur model

- Spin-Spin Term Spin-Orbit Term
- Tensor Term

S. Godfrey et al., Phys. Rev. D32 (1985) 189-231

The complex non-perturbative dynamics of QCD give rise to diverse structural formations in hadronic matter

Lanzhou University

Heavy flavor Physics

Precise test for Standard Model

> Search for New Physics

 $\mathbf{R}^{\mathrm{SM}}_{\mathbf{D}^{(*)}} = \frac{\Gamma(\mathbf{B} \to \mathbf{D}^{(*)} \tau \bar{\nu})}{\Gamma(\mathbf{B} \to \mathbf{D}^{(*)} \ell \bar{\nu})}, \qquad (\ell = \mu, \mathbf{e})$

0.25

0.35

0.40

 R_D

0.45

0.30

Ming-Zhu Liu

 $0.50 \ 0.22 \ 0.24 \ 0.26 \ 0.28 \ 0.30 \ 0.32 \ 0.34 \ 0.36$

 R_{D^*}

Productions of exotic states in b-flavored hadron decays

> A lot of exotic states were discovered in b-flavored hadron decays

Decay modes	New states	Decay modes	New states
$\Xi_b \to J/\psi \Lambda K$	$P_{cs}(4459)$	$\Lambda_b \to J/\psi pK$	$P_c(4312)/P_c(4440)/P_c(4457)$
$\Lambda_b \to Dp\pi$	$\Lambda_c(2940)$	$B^+ \to D_s^+ \pi^0 \overline{D}{}^0$	<i>D</i> _{s0} (2317)
$B_s \to J/\psi p\bar{p}$	$P_{c}(4337)$	$B^+ \to {D_s}^{*+} \pi^0 \overline{D}{}^0$	$D_{s1}(2460)$
$B \rightarrow J/\psi \Lambda \bar{p}$	$P_{cs}(4338)$	$B^+ \to D^- K^+ D^+$	$X_0(2900)/X_1(2900)$
$B^+ \to D_s^+ \pi^+ D^-$	$T_{c\bar{s}0}(2900)^{++}$	$B^+ \rightarrow J/\psi \phi K^+$	X(4140)/X(4274)
$B^0 \to D_s^{+} \pi^- \overline{D}{}^0$	$T_{c\bar{s}0}(2900)^0$	$B^+ \to J/\psi \phi K^+$	X(4500)/X(4700)
$B^+ \to D^0 \overline{D}^{*0} K^+$	X(3872)	$B^+ \to J/\psi K^+ \phi$	$Z_{cs}(4000)/Z_{cs}(4220)$
$B^+ \to D_s^+ D_s^- K^+$	X(3960)	$B^0 \to \psi' \pi^{\mp} K^{\pm}$	<i>Z_c</i> (4430)
$B^+ \rightarrow J/\psi \omega K^+$	X(3915)	$B^0 \to \chi_{c1} \pi^{\mp} K^{\pm}$	$Z_c(4051)/Z_c(4248)$
$B^+ \to K^+ K^- K^+$	$f_0(980)$	$B^0 \to J/\psi \pi^{\mp} K^{\pm}$	<i>Z_c</i> (4200)
$B^+ \to \pi^0 \pi^0 K^+$	$f_0(980)$		

> Providing rich physical observables to study the exotic states

- **Branching fraction** Invariant mass distribution
- **CP** violation

• Angular distributions

Dynamic evolution of heavy-ion collisions

Femtoscopy

> Momentum correlation function

Emission source $S_{12}(r^*)$ **Two-particle wavefunction** $\psi(k^*, r^*)$

Basic Properties $C(k) = \begin{bmatrix} >1 & \text{if the interaction is attractive} \\ =1 & \text{if there is no interaction} \\ <1 & \text{if the interaction is repulsive} \end{bmatrix}$

Correlation functions determine pole positions

Zhi-Wei Liu, et al., arXiv:2404.18607

8

Exotic state $D_{s0}^*(2317)$

> Experimental measurements of D_{s0}^* (2317)

• Mass and width

$$D_{s0}^*(2317) = 2317.8 \pm 0.5 + \frac{i}{2} < 3.8$$

• Decay Channel

 $D_{s0}^{*-} \rightarrow D_s^- \pi^0$

Large mass deviation

Branching fraction

 $Br(D_{s0}^{*-}\to D_s^-\pi^0)\approx 1$

BESIII Collaboration, , Phys. Rev. D 97, 051103 (2018)

Disfavor the D_{s0}^* (2317) as excited \bar{cs} state

 $D_{s0}^{*}(2317)$ is regarded as an exotic state!

Molecular interpretation of D_{s0}^* (2317)

Mixture of molecular and other component

Guo, PoS LATTICE2022 (2023) 232

Molecular interpretation

✓ Mass and mass splitting

$D_{s0}(2317)$	$I(J^P) = 0(0^+)$	DK
$D_{s1}(2460)$	$I(J^P) = 0(1^+)$	D^*K

- **ChPT** Guo et al., Phys.Lett.B 641 (2006) 278-285
- Lattice QCD Liu et al., Phys.Rev.D 87 (2013) 014508
- ✓ **Branching fraction** $Br(D_{s0}^{*-} \to D_s^- \pi^0) \approx 1$

✓ Molecular component more than 70%

Exotic states and hadron-hadron interactions

Study the *DK* interaction in B decays

Study the *DK* interaction in heavy-ion collisions

Summary and Outlook

Productions of D_{s0}^* (2317) in B decays

Explain these branching fractions

Decay modes	PDG 10 ⁻³	BarBar 10 ⁻³
$B^+ \to \bar{D}^0 D_{s0}^{*+}(2317)$	$0.80\substack{+0.16\\-0.13}$	$1.0\pm0.3\pm0.1$
$B^0 \to D^- D_{s0}^{*+}(2317)$	$1.06\substack{+0.16\\-0.16}$	$1.8\pm0.4\pm0.3$
$B^+ \to \bar{D}^{*0} D_{s0}^{*+}(2317)$	$0.90\substack{+0.70\\-0.70}$	$0.9 \pm 0.6 \pm 0.2$
$B^0 \to D^{*-} D_{s0}^{*+}(2317)$	$1.50\substack{+0.60\\-0.60}$	$1.5 \pm 0.4 \pm 0.2$

$$D_{s0}^*(2317) \longrightarrow D_{K}^{0}$$

12

Productions of *DK* **molecule in B decays**

Decay constants characterize the internal structure of exotic state

Calculating decay constant of $D_{s0}^*(2317)$

Effective Lagrangian approach

W

W

$$\mathcal{L}_{VDK} = f_1^{DK}(0)V^{\mu}(D\partial_{\mu}K - \partial_{\mu}DK), \quad \mathcal{L}_{VD_s\eta} = f_1^{D_s\eta}(0)V^{\mu}(D_s\partial_{\mu}\eta - \partial_{\mu}D_s\eta)$$

Loop integral

 D_{s0}^{*}

 D_{s0}^{*}

> Unknown parameters

- Renormalization energy scale

Dimensional Regularization Scheme

$$\int \frac{d^4k_1}{(2\pi)^4} \frac{k_1^\mu - k_2^\mu}{(k_1^2 - m_1^2)[(p - k_1)^2 - m_2^2]} = \frac{p^\mu}{16\pi^2} \int_0^1 dx (2x - 1) ln \frac{\Delta^2}{\mu^2}$$

Coupling constants

Calculating decay constant of D_{s0}^* (2317)

> Coupling constants

Similar regularization approach

Calculating the decay constant of $D_{s0}^*(2317)$

> Strong decay constants of $D_{s0}^*(2317)$

Couplings	$\mu = 1.00$	$\mu = 1.50$	$\mu=2.00$
$g_{D_{s0}^*DK}$	11.75	11.92	11.95
$g_{D_{s0}^*D_s\eta}$	8.13	7.47	7.32

> Decay constant of $D_{s0}^*(2317)$

Decay Constants	$\mu = 1000$	$\mu = 1500$	$\mu=2000$
$f_{D_{s0}^*(2317)}$	59.36	58.74	58.59

Decay constant of $D_{s0}^{*}(2317)$ is almost independent on the renormalization energy scale

Production rates of D_{s0}^* (2317) in b-flavored hadron decays

> Decay constants of $D_{s0}^*(2317)$ as the bare state

> Production rates of D_{s0}^* (2317) in b-flavored decays

		8		10 ⁻³	
	and the second	Ē	Decay modes	Branching fractions	
b		c	$\Lambda_b o \Lambda_c D^*_{s0}(2317)$	0.70	
d		d	$\Xi_{1} \rightarrow \Xi_{1} D^{*} (2317)$	0.58	
u		u	$\underline{-}_{b} \rightarrow \underline{-}_{c} D_{s0}(2511)$	0.00	

 $\mathcal{B}(\Xi_b \to \Xi_c M) / \mathcal{B}(B_s \to D_s M) \approx 1.23$

 $\mathcal{B}(\Lambda_b \to \Lambda_c M) / \mathcal{B}(B \to DM) \approx 1.46$

Production rates of D_{s0}^* in heavy baryons are larger than those in heavy mesons

	• •	• •
		rcitv
Lanznuu	UIIVE	ISILV

Ming-Zhu Liu

17

Exotic states and hadron-hadron interactions

Study the *DK* interaction in B decays

Study the *DK* interaction in heavy-ion collisions

Summary and Outlook

Introducing a bare component in $D_{s0}^*(2317)$

Contact-range EFT potential

More *DK* physical observables

Scattering length and correlation function

DK Scattering length

Scenario IV

- The coupled-channel effect has a minor impact on the determination of the DK scattering length
- The dressing effect of the bare state leads to an obvious modification of the DK scattering length.

DK Correlation functions

> Single channel VS couple channel without the bare state

- The coupled-channel effect has a negligible impact on the lineshape of the DK correlation function
- The correlation function exhibits its strongest deviation from unity at R=1 fm

DK Correlation function

> Single channel and couple channel with a bare state

The dressing effect of the bare state modifies the lineshape of the DK correlation function

Correlation function for X(3872)

Couple channel with a bare state

The dressing effect of the bare state significantly modifies the lineshape of the $D^0\overline{D}^{*0}$ correlation function

Lanzhou University

Exotic states and hadron-hadron interactions

Study the DK interaction in B decays

Study the *DK* interaction in heavy-ion collisions

Summary and Outlook

- ✓ From the perspective of B decays, the $D_{s0}^*(2317)$ cannot be interpreted as a pure hadronic molecule, but rather as a mixture of molecular and bare quark components.
- ✓ Our determination of the *DK* scattering length through studies of the $D_{s0}^*(2317)$ reveals that the presence or absence of a bare component impacts the value of scattering length.
- ✓ By determining the *DK* potentials from the $D_{s0}^*(2317)$ in four scenarios, we predict the DK correlation functions and find that the inclusion or exclusion of a bare component affects their lineshapes, consistent with the studies of scattering length.

Outlook

→ With SU(3)-flavor symmetry, we explore the productions of $D\pi$ interactions in B decay and heavy-ion collision via the two-pole structure of the $D_0^*(2300)$

Utilizing the DK interaction, we can predict the existence of exotic state such as the threebody hadronic molecules. See Tian-Wei Wu's talk

Thanks for your attention!

Correlation function

> Couple channel for with VS without a bare state

The dressing effect of the bare state modifies the lineshape of the DK correlation function

Correlation function

> Couple channel affect at source

$$C_{DK}(p) = 1 + 4\pi\theta (q_{\max} - p) \times \int_{0}^{+\infty} dr r^{2} S_{12}(r) \left\{ \left| j_{0}(pr) + T_{11}(E) \widetilde{G}^{(1)}(r; E) \right|^{2} \longrightarrow C_{j}(k_{j}) = 1 + \int_{0}^{\infty} d^{3}r S_{12} \left[\sum_{i} \omega_{i} \left| \delta_{ij} j_{0}(k_{j}r) + T_{ij} \widetilde{G}_{i} \right|^{2} + \left| T_{21}(E) \widetilde{G}^{(2)}(r; E) \right|^{2} - j_{0}^{2}(pr) \right\}.$$

$$\frac{\omega_i}{\omega_j} \approx \frac{\exp\left[\left(-m_{i1} - m_{i2}\right)/T^*\right]}{\exp\left[\left(-m_{j1} - m_{j2}\right)/T^*\right]}$$

T*≈154 MeV

The lineshape of Cfs remains largely insensitive to the weighting of multi-channel effects

Hadron-hadron interactions

- Experimental data
- Lattice QCD simulations

> Multiplet hadronic molecules

Symmetry Heavy quark spin symmetry(HQSS) Heavy quark flavor symmetry(HQFS) SU(3)-flavor symmetry Heavy antiquark diquark symmetry(HADS)

> Three-body hadronic molecules

Effective Field Theory One Boson Exchange(OBE) model Chiral Unitary Approach(ChUA)

Momentum correlation functions

