

Existence of $\mathbf{0}^{--} \bar{\mathbf{D}}_s \mathbf{D} \mathbf{K}$ on nature of \mathbf{D}_{s0}^* (2317)

Accepted by PRL: 2501.11358

Tian-Wei Wu(中山大学)

Collaborators: Ming-Zhu Liu and Li-sheng Geng

2025.0714@桂林

第八届强子谱和强子结构研讨会

Gell-Mann

1964年, Gell-Mann等人提出夸克模型,将当时发现的强子分类为介子和重子,并成功预言了 Ω^- 粒子。

Exotic quantum numbers in Hadrons

Spin and Parity of two-body systems

$$|\ell - s| \le J \le |\ell + s| \qquad P = (-1)^{\ell} P_a P_b$$

C and G parity of $\Phi \overline{\Phi}$ (FF and BB)

$$C(\Phi\overline{\Phi}) = (-1)^{\ell+s} \qquad G = (-1)^{I+\ell+s}$$

Exotic quantum numbers in Hadrons

Spin and Parity of two-body systems

$$|\ell - s| \le J \le |\ell + s|$$
 $P = (-1)^{\ell} P_a P_b$

C and G parity of $\Phi \bar{\Phi}$ (FF and BB)

$$C(\Phi\overline{\Phi}) = (-1)^{\ell+s} \qquad G = (-1)^{I+\ell+s}$$

Quantum numbers $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}...$ are forbidden in $q\bar{q}$ mesons.

Exotic hadronic states

Normal hadron:

meson: quark-antiquark pair

baryon: 3 quarks

Exotic hadron state:

1. Glueball

Composed of gluons

2. Hybrid

Composed of quarks and gluons

3. Multiquark state

Composed of multi quarks(>3)

4. Hadronic molecule

Composed of 2 or more hadrons

Hadronic molecules

F.K. Guo, et al. Rev.Mod.Phys.90.015004

Three-body molecules

T.W. Wu, et al. Sci. Bull. 67 (2022) 1735-1738

M.Z. Liu, et al. Phys.Rept. 1108 (2025) 1-108

Three-body molecules based on two-body candidates

Three-body molecules

T.W. Wu, et al. Science Bulletin 67 (2022) 1735-1738

Study mainly focused on:

Existence (mass\structure)

Decay (channel\partial width)

Production (B.F.\events)

How to find and verify three-body molecules?

Seraching for DDK

 $\Upsilon(1S)/\Upsilon(2S) \to R^{++} + \text{anything}, R^{++} \to D^+ D_s^{*+}$

 $e^+e^- \rightarrow R^{++} + \text{anything at } \sqrt{s} = 10.520/10.580/10.867 \text{ GeV}, R^{++} \rightarrow D^+D_s^{*+}$

Doubly charmed more difficult to produce.

Features of $\bar{D}_s DK$ system

 $\sqrt{\rm Study}$ on three-body systems with C-parity

C-parity interaction included

 $\sqrt{}$ No mixture of conventional hadrons

 $\mathbf{0}^{--}$ exotic quantum numbers

 $\sqrt{\mbox{ Two-body system can not bind}}$

Suppressed by the OBE model or OZI rule

 $\sqrt{Produced}$ in both e^+e^- and pp collisions

Hidden charm/strange state easier to observe

Wave function of $\bar{D}_s DK$ with C parity

$$\Psi^{C} = \frac{1}{\sqrt{2}} (\Psi_{\bar{D}_{s}DK} + C\Psi'_{D_{s}\bar{D}\bar{K}}), \quad \langle \Psi^{C} | (H-E) | \Psi^{C} \rangle = 0$$
$$C = \pm 1$$

$$\Psi'_{D_s\bar{D}\bar{K}} = \hat{C}\Psi_{\bar{D}_sDK} = \sum_{c=1,3} \Phi(r'_c, R'_c).$$

Solve three-body problem with **GEM**

$$H = T + V + V_C$$
Two-body C-parity
interaction interaction

Two-body interactions

DK interaction parameterized by a constant C_a

with Contact-range EFT approach

 $DK - D_s \eta$ coupled channel interaction in matrix form

$$V_{DK-D_{s}\eta}^{J^{P}=0^{+}} = \begin{pmatrix} C_{a} & -\frac{\sqrt{3}}{2}C_{a} \\ -\frac{\sqrt{3}}{2}C_{a} & 0 \end{pmatrix}$$

 V_{DK} in a Gaussian form in coordinate space

$$V(r) = C_a \frac{e^{(r/R_c)2}}{\pi^{3/2} R_c^3},$$

With SU(3) flavor symmtry and experimental fitting

$$C_a^{DK}: C_a^{\bar{D}_s K}: C_a^{\bar{D}_s D} \approx 1: 0.5: 0.1$$

 $D_{s0}^{*}(2317)$

Ds0(2317), discovered by BABAR, CLEO and D0.

@PDG (Expe.) Mass: 2317.7 MeV Width: < 3.8MeV Partner D_{s1}: 2460 MeV M(D_{s1})-M(D_{s0})=140 MeV

T. Barnes, et al. Phys. Rev. D 68, 054006

@Quark model (Theo.)
Mass: 2480 MeV
Width: 270-990 MeV
Partner D_{s1} : 2560 MeV
M(D_{s1})-M(D_{s0})=80 MeV

Explanations of Ds0*(2317)

TABLE V. Pole positions $\sqrt{s} = M - i\frac{\Gamma}{2}$ (in units of MeV) of charm mesons dynamically generated in the HQS UChPT.

(S, I)	$J^P=0^+$	$J^P = 1^+$
(1, 0)	2317 ± 10	2457 ± 17
(0, 1/2)	$(2105 \pm 4) - i(103 \pm 7)$	$(2248 \pm 6) - i(106 \pm 13)$

ChPT, Lattice and Exp. all surport that the $D_{s0}(2317)$ is a DK molecule or at least has a large DK component.

DK interaction fitting $D_{S0}(2317)$

Considering $D_{S0}(2317)$ as a $DK - D_s\eta$ molecule + $c\bar{s}$ state

Momentum space

Couplings	$\Lambda=0.50$	$\Lambda = 1.00$	$\Lambda=1.50$	$\Lambda=2.00$	$\Lambda=0.50$	$\Lambda=1.00$	$\Lambda=1.50$	$\Lambda=2.00$
$g_{D_{s0}^*DK}$ (GeV)	19.37	14.72	13.32	12.66	16.20	12.28	11.16	10.63
$g_{D_{s0}^*D_s\eta}$ (GeV)	13.23	9.54	8.40	7.86	10.42	7.70	6.89	6.50
$C_a(\mathrm{fm}^2)$	-5.78	-1.84	-1.03	-0.71	-6.96	-2.06	-1.12	-0.75
Compositeness	$\Lambda = 0.50$	$\Lambda=1.00$	$\Lambda=1.50$	$\Lambda=2.00$	$\Lambda = 0.50$	$\Lambda=1.00$	$\Lambda=1.50$	$\Lambda=2.00$
P_{DK}	0.92	0.90	0.89	0.88	0.65	0.63	0.62	0.62
$P_{D_s\eta}$	0.08	0.10	0.11	0.12	0.05	0.07	0.08	0.08

100% molecule

70 % molecule+30 % $\mathbf{C}\overline{\mathbf{S}}$

Coordinate space

Components of $D_{s0}^*(2317)$	$M(DK - D_s \eta)$	M(DK)	$M(c\bar{s})$	$P(c\bar{s})$	P(DK)	$P(D_s\eta)$
70% molecule+30% $c\bar{s}$	2280	2349	2406	30%	60%	10%
100% molecule	2318	2358	2406	0%	90%	10%
50% molecule+50% $c\bar{s}$	2230	2336	2406	50%	42%	8%

 $DK - D_s \eta > c\bar{s}$ $B_{DK} < 45 \text{ MeV}$

C-parity interaction $\bar{D}_s D_{s0}^* - D_s \bar{D}_{s0}^*$

 $q_0 = m_{D_{s0}^*} - m_{D_s}, k = 0.56, \quad \Lambda = \alpha \Lambda_{QCD} + m_{eff}, m_{eff} = \sqrt{m_\eta^2 - (m_{D_{s0}^*} - m_{D_s})^2}.$

C-parity interaction $\bar{D}_s D_{s0}^* - D_s \bar{D}_{s0}^*$

 η exchange potential

V_C simplified as

$$V^{C=\pm} = \mp \frac{2}{3} \frac{k^2}{f_{\pi}^2} q_0^2 \left(\frac{e^{-mr} - e^{-\Lambda r}}{4\pi r} - \frac{\Lambda^2 - m^2}{8\pi\Lambda} e^{-\Lambda r}\right)$$

 $q_0 = m_{D_{s0}^*} - m_{D_s}, k = 0.56, \quad \Lambda = \alpha \Lambda_{QCD} + m_{eff}, m_{eff} = \sqrt{m_\eta^2 - (m_{D_{s0}^*} - m_{D_s})^2}.$

Binding, weights and spatial struture

Mainly contributed by

 R_2

D

18

Comparion with 0^{-+}

 $0^{-+} \bar{D}_s DK$: coupling with $C\bar{C}$ and $\bar{D}_s D_{s0}^*$ $0^{--} \bar{D}_s DK$: no coupling with $C\bar{C}$ and $\bar{D}_s D_{s0}^*$

Decays of $0^{--} \bar{D}_s DK$ molecule X(4310)

Triangle diagrams of the strong decays

$$\begin{split} i\mathcal{M}_{a} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\psi\bar{D}_{s}D_{s}}\int \frac{d^{4}q}{(2\pi)^{4}}(k_{2}^{\mu}-q^{\mu})\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{D_{s}}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}),\\ i\mathcal{M}_{b} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}D_{s}\eta}g_{\bar{D}_{s}D_{s}^{*}\eta}\int \frac{d^{4}q}{(2\pi)^{4}}q^{\mu}\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{\eta}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}),\\ i\mathcal{M}_{c} &= g_{XD_{s0}^{*}\bar{D}_{s}}g_{D_{s0}^{*}DK}g_{\bar{D}_{s}D^{*}K}\int \frac{d^{4}q}{(2\pi)^{4}}q^{\mu}\frac{1}{k_{1}^{2}-m_{D_{s0}^{*}}^{2}}\frac{1}{k_{2}^{2}-m_{\bar{D}_{s}}^{2}}\frac{1}{q^{2}-m_{\eta}^{2}}\varepsilon_{\mu}(p_{2})F(q^{2}), \end{split}$$

$$\Gamma = \frac{1}{2J+1} \frac{1}{8\pi} \frac{|\vec{p}|}{M^2} |\vec{\mathcal{M}}|^2 \qquad \qquad F(q,\Lambda,m) = (\frac{\Lambda^2 - m_E^2}{\Lambda^2 - q^2})^2,$$

Partial decay widths

 $X \to J/\psi\eta \sim 10^1$ $X \to \bar{D}_s D_s^* \sim 10^2$ $X \to \bar{D}^* D \sim 10^3$

Dominent decay: $X \to D^*D$

Productions of $0^{--} \bar{D}_s DK$ molecule

Production rate: $B \rightarrow [X(4310) \rightarrow \overline{D}^*D]K \sim (3 \pm 1) \times 10^{-6}$

Hints in LHCb

TABLE I. Resonant and nonresonant components included in the baseline fit and their spin parities, fit fractions, and product branching fractions $[\mathcal{B}(B^+ \to RC) \times \mathcal{B}(R \to AB)]$, where *A*, *B*, *C* are the three final-state particles. To obtain the branching fractions, including both $R \to D^{*+}D^-$ and $R \to D^{*-}D^+$, the values in the table should be multiplied by a factor of 2. The first uncertainties are statistical, estimated with a bootstrap method [32], the second are systematic, and the third are from the uncertainty of the $B^+ \to D^{*+}D^-K^+$ branching fraction. The masses and widths of the resonances marked with the [†] symbol are fixed to their known values [6].

Component	$J^{P(C)}$	Fit fraction [%] $B^+ \rightarrow D^{*+}D^-K^+$	Fit fraction [%] $B^+ \rightarrow D^{*-}D^+K^+$	Branching fraction $[10^{-4}]$
EFF ₁₊₊	1++	$10.9^{+2.3}_{-1.2}{}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm 0.07$
$\eta_{c}(3945)$	0-+	$3.4^{+0.5}_{-1.0}$	$3.1^{+0.5}_{-0.9}$ $^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm 0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}$ $^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}~^{+0.04}_{-0.08}\pm 0.01$
$h_{c}(4000)$	1+-	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}~^{+0.10}_{-0.05}\pm0.03$
$\chi_{c1}(4010)$	1^{++}	$10.1^{+1.6}_{-0.9}{}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}~^{+0.09}_{-0.11}\pm0.06$
$\psi(4040)^{\dagger}$	1	$2.8^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}~^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}~^{+0.03}_{-0.03}\pm0.02$
$h_c(4300)$	1+-	$1.2^{+0.2}_{-0.5} {}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5} {}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}~^{+0.02}_{-0.01}\pm0.01$
$T^*_{ar{c}ar{s}0}(2870)^0,^\dagger$	0+	$6.5^{+0.9}_{-1.2}$ $^{+1.3}_{-1.6}$		$0.45^{+0.06}_{-0.08}~^{+0.09}_{-0.10}\pm 0.04$
$T^*_{ar{c}ar{s}1}(2900)^{0\dagger}$	1-	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$		$0.38^{+0.07}_{-0.10}~^{+0.16}_{-0.11}\pm0.03$
$\operatorname{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4^{+2.3}_{-0.6}$	$18.5^{+2.1}_{-0.5}$	$1.39^{+0.16}_{-0.04}$
$\operatorname{NR}_{0^{}}(D^{*\mp}D^{\pm})$	0	$1.2^{+0.6}_{-0.1}$ $^{+0.7}_{-0.6}$	$1.1^{+0.6}_{-0.1}{}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm 0.01$
$\operatorname{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1++	$17.8^{+1.9}_{-1.4}{}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}$ $^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}$ $^{+0.24}_{-0.17}\pm0.11$
$\underline{\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})}$	0-+	$15.9^{+3.3}_{-1.2} {}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}~^{+0.22}_{-0.23}\pm0.09$

LHCb, Phys. Rev. Lett. 133,131902(2024)

Hints in LHCb

LHCb, Phys. Rev. Lett. 133,131902(2024)

Estimation of events in LHC

BaBar, Phys. Rev. D 83, 032004(2011) LHCb, Phys. Rev. Lett. 133,131902(2024) $\mathcal{B}(B^+ \to D^{*\pm}D^{\mp}K^+]) \sim 6 \times 10^{-4} \quad B^+ \to D^{*\pm}D^{\mp}K^+ \sim 2 \times 10^3 \quad {}^{9\text{fb}^{-1}}$

$$\begin{split} & \mathsf{LHCb}, \mathsf{JHEP} \ \mathsf{12}, \ \mathsf{139} \ (\mathsf{2020}) \\ & \frac{\mathcal{B}(B^+ \to D^{*+}D^-K^+)}{\mathcal{B}(B^+ \to \bar{D}^0 D^0 K^+)} = 0.517 \pm 0.015 \pm 0.013 \pm 0.011 \, , \\ & \frac{\mathcal{B}(B^+ \to D^{*-}D^+K^+)}{\mathcal{B}(B^+ \to \bar{D}^0 D^0 K^+)} = 0.577 \pm 0.016 \pm 0.013 \pm 0.013 \, , \\ & \frac{\mathcal{B}(B^0 \to D^{*-}D^0 K^+)}{\mathcal{B}(B^0 \to D^-D^0 K^+)} = 1.754 \pm 0.028 \pm 0.016 \pm 0.035 \, , \\ & \frac{\mathcal{B}(B^+ \to D^{*+}D^-K^+)}{\mathcal{B}(B^+ \to D^{*-}D^+K^+)} = 0.907 \pm 0.033 \pm 0.014 \, , \end{split}$$

Process: $B^+ \to [X(4310) \to D^{*\pm}D^{\mp}]K^+ \sim 5 \times 10^{-7}$

LHC integrated luminosity:	50 fb ⁻¹	Events:	10
	350 fb ⁻¹		100

25

- > 4310 MeV $\mathbf{0}^{--} \ \bar{\mathbf{D}}_{s} \mathbf{D} \mathbf{K}$ exotic molecule is predicted on the nature of $\mathbf{D}_{s0}^{*}(\mathbf{2317})$ as a molecule and $\mathbf{C} \bar{\mathbf{S}}$ mixture
- > Main decay $X \to \bar{D}^*D$ with several MeV width
- > Production process $\boldsymbol{B} \to (\boldsymbol{X} \to \bar{\boldsymbol{D}}^* \boldsymbol{D}) \boldsymbol{K}$ with 10⁻⁶ branching fraction

Experiment searches are strongly recommanded !